
Fictitious Self-Play in Extensive-Form Games

Johannes Heinrich J.HEINRICH@CS.UCL.AC.UK

University College London, UK

Marc Lanctot LANCTOT@GOOGLE.COM

Google DeepMind, London, UK

David Silver DAVIDSILVER@GOOGLE.COM

Google DeepMind, London, UK

Abstract
Fictitious play is a popular game-theoretic model
of learning in games. However, it has received
little attention in practical applications to large
problems. This paper introduces two variants
of fictitious play that are implemented in be-
havioural strategies of an extensive-form game.
The first variant is a full-width process that is re-
alization equivalent to its normal-form counter-
part and therefore inherits its convergence guar-
antees. However, its computational requirements
are linear in time and space rather than exponen-
tial. The second variant, Fictitious Self-Play, is
a machine learning framework that implements
fictitious play in a sample-based fashion. Ex-
periments in imperfect-information poker games
compare our approaches and demonstrate their
convergence to approximate Nash equilibria.

1. Introduction
Fictitious play, introduced by Brown (1951), is a popu-
lar game-theoretic model of learning in games. In ficti-
tious play, players repeatedly play a game, at each iteration
choosing a best response to their opponents’ average strate-
gies. The average strategy profile of fictitious players con-
verges to a Nash equilibrium in certain classes of games,
e.g. two-player zero-sum and potential games. Fictitious
play is a standard tool of game theory and has motivated
substantial discussion and research on how Nash equilib-
ria could be realized in practice (Brown, 1951; Fuden-
berg, 1998; Hofbauer & Sandholm, 2002; Leslie & Collins,
2006). Furthermore, it is a classic example of self-play

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

learning from experience that has inspired artificial intel-
ligence algorithms in games.

Despite the popularity of fictitious play to date, it has seen
use in few large-scale applications, e.g. (Lambert III et al.,
2005; McMahan & Gordon, 2007; Ganzfried & Sandholm,
2009; Heinrich & Silver, 2015). One possible reason for
this is its reliance on a normal-form representation. While
any extensive-form game can be converted into a normal-
form equivalent (Kuhn, 1953), the resulting number of ac-
tions is typically exponential in the number of game states.
The extensive-form offers a much more efficient represen-
tation via behavioural strategies whose number of param-
eters is linear in the number of information states. Hen-
don et al. (1996) introduce two definitions of fictitious play
in behavioural strategies and show that each convergence
point of their variants is a sequential equilibrium. However,
these variants are not guaranteed to converge in imperfect-
information games.

The first fictitious play variant that we introduce in this pa-
per is full-width extensive-form fictitious play (XFP). It is
realization equivalent to a normal-form fictitious play and
therefore inherits its convergence guarantees. However, it
can be implemented using only behavioural strategies and
therefore its computational complexity per iteration is lin-
ear in the number of game states rather than exponential.

XFP and many other current methods of computational
game theory (Sandholm, 2010) are full-width approaches
and therefore require reasoning about every state in the
game at each iteration. Apart from being given state-
aggregating abstractions, that are usually hand-crafted from
expert knowledge, the algorithms themselves do not gen-
eralise between strategically similar states. Leslie &
Collins (2006) introduce generalised weakened fictitious
play which explicitly allows certain kinds of approxima-
tions in fictitious players’ strategies. This motivates the use
of approximate techniques like machine learning which ex-

Fictitious Self-Play in Extensive-Form Games

cel at learning and generalising from finite data.

The second variant that we introduce is Fictitious Self-Play
(FSP), a machine learning framework that implements gen-
eralised weakened fictitious play in behavioural strategies
and in a sample-based fashion. In FSP players repeatedly
play a game and store their experience in memory. In-
stead of playing a best response, they act cautiously and
mix between their best responses and average strategies.
At each iteration players replay their experience of play
against their opponents to compute an approximate best re-
sponse. Similarly, they replay their experience of their own
behaviour to learn a model of their average strategy. In
more technical terms, FSP iteratively samples episodes of
the game from self-play. These episodes constitute data
sets that are used by reinforcement learning to compute
approximate best responses and by supervised learning to
compute perturbed models of average strategies.

1.1. Related work

Efficiently computing Nash equilibria of imperfect-
information games has received substantial attention by re-
searchers in computational game theory and artificial in-
telligence (Sandholm, 2010; Bowling et al., 2015). The
most popular modern techniques are either optimization-
based (Koller et al., 1996; Gilpin et al., 2007; Miltersen &
Sørensen, 2010; Bosansky et al., 2014) or perform regret
minimization (Zinkevich et al., 2007). Counterfactual re-
gret minimization (CFR) is the first approach which essen-
tially solved an imperfect-information game of real-world
scale (Bowling et al., 2015). Being a self-play approach
that uses regret minimization, it has some similarities to
the utility-maximizing self-play approaches introduced in
this paper.

Similar to full-width CFR, our full-width method’s worst-
case computational complexity per iteration is linear in
the number of game states and it is well-suited for paral-
lelization and distributed computing. Furthermore, given
a long-standing conjecture (Karlin, 1959; Daskalakis &
Pan, 2014) the convergence rate of fictitious play might be
O(n−

1
2), which is of the same order as CFR’s.

Similar to Monte Carlo CFR (Lanctot et al., 2009), FSP
uses sampling to focus learning and computation on se-
lectively sampled trajectories and thus breaks the curse of
dimensionality. However, FSP only requires a black box
simulator of the game. In particular, agents do not require
any explicit knowledge about their opponents or even the
game itself, other than what they experience in actual play.
A similar property has been suggested possible for a form
of outcome-sampling MCCFR, but remains unexplored.

2. Background
In this section we provide a brief overview over common
game-theoretic representations of a game, fictitious play
and reinforcement learning. For a more detailed exposi-
tion we refer the reader to (Myerson, 1991), (Fudenberg,
1998) and (Sutton & Barto, 1998).

2.1. Extensive-Form

Extensive-form games are a model of sequential interac-
tion involving multiple agents. The representation is based
on a game tree and consists of the following components:
N = {1, ..., n} denotes the set of players. S is a set of
states corresponding to nodes in a finite rooted game tree.
For each state node s ∈ S the edges to its successor states
define a set of actions A(s) available to a player or chance
in state s. The player function P : S → N ∪ {c}, with c
denoting chance, determines who is to act at a given state.
Chance is considered to be a particular player that follows
a fixed randomized strategy that determines the distribu-
tion of chance events at chance nodes. For each player
i there is a corresponding set of information states U i
and an information function Ii : S → U i that determines
which states are indistinguishable for the player by map-
ping them on the same information state u ∈ U i. Through-
out this paper we assume games with perfect recall, i.e.
each player’s current information state uik implies knowl-
edge of the sequence of his information states and actions,
ui1, a

i
1, u

i
2, a

i
2, ..., u

i
k, that led to this information state. Fi-

nally, R : S → Rn maps terminal states to a vector whose
components correspond to each player’s payoff.

A player’s behavioural strategy, πi(u) ∈
∆ (A(u)) , ∀u ∈ U i, determines a probability distri-
bution over actions given an information state, and ∆i

b is
the set of all behavioural strategies of player i. A strategy
profile π = (π1, ..., πn) is a collection of strategies for all
players. π−i refers to all strategies in π except πi. Based
on the game’s payoff function R, Ri(π) is the expected
payoff of player i if all players follow the strategy profile
π. The set of best responses of player i to their opponents’
strategies π−i is bi(π−i) = arg maxπi∈∆i

b
Ri(πi, π−i).

For ε > 0, biε(π
−i) = {πi ∈ ∆i

b : Ri(πi, π−i) ≥
Ri(bi(π−i), π−i) − ε} defines the set of ε-best responses
to the strategy profile π−i. A Nash equilibrium of an
extensive-form game is a strategy profile π such that
πi ∈ bi(π−i) for all i ∈ N . An ε-Nash equilibrium is a
strategy profile π such that πi ∈ biε(π−i) for all i ∈ N .

2.2. Normal-Form

An extensive-form game induces an equivalent normal-
form game as follows. For each player i ∈ N their deter-
ministic strategies, ∆i

p ⊂ ∆i
b, define a set of normal-form

Fictitious Self-Play in Extensive-Form Games

actions, called pure strategies. Restricting the extensive-
form payoff function R to pure strategy profiles yields a
payoff function in the normal-form game.

Each pure strategy can be interpreted as a full game plan
that specifies deterministic actions for all situations that a
player might encounter. Before playing an iteration of the
game each player chooses one of their available plans and
commits to it for the iteration. A mixed strategy Πi for
player i is a probability distribution over their pure strate-
gies. Let ∆i denote the set of all mixed strategies available
to player i. A mixed strategy profile Π ∈ ×i∈N∆i specifies
a mixed strategy for each player. Finally, Ri : ×i∈N∆i →
R determines the expected payoff of player i given a mixed
strategy profile.

Throughout this paper, we use small Greek letters for be-
havioural strategies of the extensive-form and large Greek
letters for pure and mixed strategies of a game’s normal-
form.

2.3. Realization-equivalence

The sequence-form (Koller et al., 1994; Von Stengel, 1996)
of a game decomposes players’ strategies into sequences
of actions and probabilities of realizing these sequences.
These realization probabilities provide a link between be-
havioural and mixed strategies.

For any player i ∈ N of a perfect-recall extensive-form
game, each of their information states ui ∈ U i uniquely
defines a sequence σui of actions that the player is required
to take in order to reach information state ui. Let Σi ={
σu : u ∈ U i

}
denote the set of such sequences of player

i. Furthermore, let σua denote the sequence that extends
σu with action a.

Definition 1. A realization plan of player i ∈ N is a func-
tion, x : Σi → [0, 1], such that x(∅) = 1 and ∀σu ∈ U i:
x(σu) =

∑
a∈A(u) x(σua).

A behavioural strategy π induces a realization plan
xπ(σu) =

∏
(u′,a)∈σu π(u′, a), where the notation (u′, a)

disambiguates actions taken at different information states.
Similarly, a realization plan induces a behavioural strategy,
π(u, a) = x(σua)

x(σu) , where π is defined arbitrarily at informa-
tion states that are never visited, i.e. when x(σu) = 0. As
a pure strategy is just a deterministic behavioural strategy,
it has a realization plan with binary values. As a mixed
strategy is a convex combination of pure strategies, Π =∑
i wiΠi, its realization plan is a similarly weighted con-

vex combination of the pure strategies’ realization plans,
xΠ =

∑
i wixΠi .

The following definition and theorems connect an
extensive-form game’s behavioural strategies with mixed
strategies of the equivalent normal-form representation.

Definition 2. Two strategies π1 and π2 of a player are
realization-equivalent if for any fixed strategy profile of
the other players both strategies, π1 and π2, define the same
probability distribution over the states of the game.

Theorem 3 (compare also (Von Stengel, 1996)). Two
strategies are realization-equivalent if and only if they have
the same realization plan.

Theorem 4 (Kuhn’s Theorem (Kuhn, 1953)). For a player
with perfect recall, any mixed strategy is realization-
equivalent to a behavioural strategy, and vice versa.

2.4. Fictitious Play

In this work we use a general version of fictitious play that
is due to Leslie & Collins (2006) and based on the work of
Benaı̈m et al. (2005). It has similar convergence guarantees
as common fictitious play, but allows for approximate best
responses and perturbed average strategy updates.

Definition 5. A generalised weakened fictitious play is a
process of mixed strategies, {Πt}, Πt ∈ ×i∈N∆i, s.t.

Πi
t+1 ∈ (1−αt+1)Πi

t+αt+1(biεt(Π
−i
t)+M i

t+1), ∀i ∈ N ,

with αt → 0 and εt → 0 as t → ∞,
∑∞
t=1 αt = ∞, and

{Mt} a sequence of perturbations that satisfies ∀T > 0

lim
t→∞

sup
k

{∥∥∥∥∥
k−1∑
i=t

αi+1Mi+1

∥∥∥∥∥ s.t.
k−1∑
i=t

αi+1 ≤ T

}
= 0.

Original fictitious play (Brown, 1951; Robinson, 1951) is a
generalised weakened fictitious play with stepsize αt = 1

t ,
εt = 0 and Mt = 0 ∀t. Generalised weakened fictitious
play converges in certain classes of games that are said to
have the fictitious play property (Leslie & Collins, 2006),
e.g. two-player zero-sum and potential games.

2.5. Reinforcement Learning

Reinforcement learning (Sutton & Barto, 1998) agents typ-
ically learn to maximize their expected future reward from
interaction with an environment. The environment is usu-
ally modelled as a Markov decision process (MDP). A
MDP consists of a set of Markov states S, a set of actions
A, a transition functionPass′ and a reward functionRas . The
transition function determines the probability of transition-
ing to state s′ after taking action a in state s. The reward
function Ras determines an agent’s reward after taking ac-
tion a in state s. An agent behaves according to a policy
that specifies a distribution over actions at each state.

Many reinforcement learning algorithms learn from se-
quential experience in the form of transition tuples,
(st, at, rt+1, st+1), where st is the state at time t, at is the

Fictitious Self-Play in Extensive-Form Games

action chosen in that state, rt+1 the reward received there-
after and st+1 the next state that the agent transitioned to.
An agent is learning on-policy if it gathers these transition
tuples by following its own policy. In the off-policy set-
ting an agent is learning from experience of another agent
or another policy.

Q-learning (Watkins & Dayan, 1992) is a popular off-
policy reinforcement learning method that can be used
to learn an optimal policy of a MDP. Fitted Q Iteration
(FQI) (Ernst et al., 2005) is a batch reinforcement learning
method that applies Q-learning to a data set of transition
tuples from a MDP.

3. Extensive-Form Fictitious Play
In this section, we derive a process in behavioural strategies
that is realization equivalent to normal-form fictitious play.

The following lemma shows how a mixture of normal-form
strategies can be implemented by a weighted combination
of their realization equivalent behavioural strategies.

Lemma 6. Let π and β be two behavioural strategies, Π
and B two mixed strategies that are realization equivalent
to π and β, and λ1, λ2 ∈ R≥0 with λ1 + λ2 = 1. Then for
each information state u ∈ U ,

µ(u) = π(u) +
λ2xβ(σu)

λ1xπ(σu) + λ2xβ(σu)
(β(u)− π(u))

defines a behavioural strategy µ at u and µ is realization
equivalent to the mixed strategy M = λ1Π + λ2B.

Theorem 7 presents a fictitious play in behavioural strate-
gies that inherits the convergence results of generalised
weakened fictitious play by realization-equivalence.

Theorem 7. Let π1 be an initial behavioural strategy pro-
file. The extensive-form process

βit+1 ∈ biεt+1
(π−it),

πit+1(u) = πit(u) +
αt+1xβit+1

(σu)
(
βit+1(u)− πit(u)

)
(1− αt+1)xπit(σu) + αt+1xβit+1

(σu)

for all players i ∈ N and all their information states
u ∈ U i, with αt → 0 and εt → 0 as t → ∞, and∑∞
t=1 αt = ∞, is realization-equivalent to a generalised

weakened fictitious play in the normal-form and therefore
the average strategy profile converges to a Nash equilib-
rium in all games with the fictitious play property.

Algorithm 1 implements XFP, the extensive-form fictitious
play of Theorem 7. The initial average strategy profile,
π1, can be defined arbitrarily, e.g. uniform random. At
each iteration the algorithm performs two operations. First
it computes a best response profile to the current average

strategies. Secondly it uses the best response profile to up-
date the average strategy profile. The first operation’s com-
putational requirements are linear in the number of game
states. For each player the second operation can be per-
formed independently from their opponents and requires
work linear in the player’s number of information states.
Furthermore, if a deterministic best response is used, the
realization weights of Theorem 7 allow ignoring all but one
subtree at each of the player’s decision nodes.

Algorithm 1 Full-width extensive-form fictitious play
function FICTITIOUSPLAY(Γ)

Initialize π1 arbitrarily
j ← 1
while within computational budget do
βj+1 ← COMPUTEBRS(πj)
πj+1 ← UPDATEAVGSTRATEGIES(πj , βj+1)
j ← j + 1

end while
return πj

end function

function COMPUTEBRS(π)
Recursively parse the game’s state tree to compute a
best response strategy profile, β ∈ b(π).
return β

end function

function UPDATEAVGSTRATEGIES(πj , βj+1)
Compute an updated strategy profile πj+1 according
to Theorem 7.
return πj+1

end function

4. Fictitious Self-Play
FSP is a machine learning framework that implements gen-
eralised weakened fictitious play in a sample-based fashion
and in behavioural strategies. XFP suffers from the curse
of dimensionality. At each iteration, computation needs to
be performed at all states of the game irrespective of their
relevance. However, generalised weakened fictitious play
only requires approximate best responses and even allows
some perturbations in the updates.

FSP replaces the two fictitious play operations, best re-
sponse computation and average strategy updating, with
machine learning algorithms. Approximate best responses
are learned by reinforcement learning from play against
the opponents’ average strategies. The average strategy
updates can be formulated as a supervised learning task,
where each player learns a transition model of their own
behaviour. We introduce reinforcement learning-based best
response computation in section 4.1 and present supervised
learning-based strategy updates in section 4.2.

Fictitious Self-Play in Extensive-Form Games

4.1. Reinforcement Learning

Consider an extensive-form game and some strategy pro-
file π. Then for each player i ∈ N the strategy profile of
their opponents, π−i, defines an MDP,M(π−i) (Silver &
Veness, 2010; Greenwald et al., 2013). Player i’s informa-
tion states define the states of the MDP. The MDP’s dy-
namics are given by the rules of the extensive-form game,
the chance function and the opponents’ fixed strategy pro-
file. The rewards are given by the game’s payoff func-
tion. An ε-optimal policy of the MDP, M(π−i), there-
fore yields an ε-best response of player i to the strategy
profile π−i. Thus the iterative computation of approximate
best responses can be formulated as a sequence of MDPs to
solve approximately, e.g. by applying reinforcement learn-
ing to samples of experience from the respective MDPs. In
particular, to approximately solve the MDP M(π−i) we
sample player i’s experience from their opponents’ strat-
egy profile π−i. Player i’s strategy should ensure sufficient
exploration of the MDP but can otherwise be arbitrary if
an off-policy reinforcement learning method is used, e.g.
Q-learning (Watkins & Dayan, 1992).

While generalised weakened fictitious play allows εk-best
responses at iteration k, it requires that the deficit εk van-
ishes asymptotically, i.e. εk → 0 as k → ∞. Learn-
ing such a valid sequence of εk-optimal policies of a se-
quence of MDPs would be hard if these MDPs were unre-
lated and knowledge could not be transferred. However, in
fictitious play the MDP sequence has a particular structure.
The average strategy profile at iteration k is realization-
equivalent to a linear combination of two mixed strategies,
Πk = (1−αk)Πk−1 +αkBk. Thus, in a two-player game,
the MDPM(π−ik) is structurally equivalent to an MDP that
initially picks betweenM(π−ik−1) andM(β−ik) with prob-
ability (1− αk) and αk respectively. Due to this similarity
between subsequent MDPs it is possible to transfer knowl-
edge. The following corollary bounds the increase of the
optimality deficit when transferring an approximate solu-
tion between subsequent MDPs in a fictitious play process.

Corollary 8. Let Γ be a two-player zero-sum
extensive-form game with maximum payoff range
R̄ = maxπ∈∆R1(π) − minπ∈∆R1(π). Consider a
fictitious play process in this game. Let Πk be the average
strategy profile at iteration k, Bk+1 a profile of εk+1-best
responses to Πk, and Πk+1 = (1−αk+1)Πk +αk+1Bk+1

the usual fictitious play update for some stepsize
αk+1 ∈ (0, 1). Then for each player i, Bik+1 is an
[εk + αk+1(R̄− εk)]-best response to Πk+1.

This bounds the absolute amount by which reinforcement
learning needs to improve the best response profile to
achieve a monotonic decay of the optimality gap εk. How-
ever, εk only needs to decay asymptotically. Given αk → 0
as k → ∞, the bound suggests that in practice a fi-

nite amount of learning per iteration might be sufficient to
achieve asymptotic improvement of best responses.

In this work we use FQI to learn from data sets of sampled
experience. At each iteration k, FSP samples episodes of
the game from self-play. Each agent i adds its experience
to its replay memory,Mi

RL. The data is stored in the form
of episodes of transition tuples, (ut, at, rt+1, ut+1). Each
episode, E = {(ut, at, rt+1, ut+1)}0≤t≤T , T ∈ N, con-
tains a finite number of transitions. We use a finite memory
of fixed size. If the memory is full, new episodes replace
existing episodes in a first-in-first-out order. Using a finite
memory and updating it incrementally can bias the underly-
ing distribution that the memory approximates. We want to
achieve a memory composition that approximates the dis-
tribution of play against the opponents’ average strategy
profile. This can be achieved by using a self-play strategy
profile that properly mixes between the agents’ average and
best response strategy profiles.

4.2. Supervised Learning

Consider the point of view of a particular player i who
wants to learn a behavioural strategy π that is realization-
equivalent to a convex combination of their own normal-
form strategies, Π =

∑n
k=1 wkBk,

∑n
k=1 wk = 1. This

task is equivalent to learning a model of the player’s be-
haviour when it is sampled from Π. Lemma 6 describes the
behavioural strategy π explicitly, while in a sample-based
setting we use samples from the realization-equivalent
strategy Π to learn an approximation of π. Recall that we
can sample from Π by sampling from each constituent Bk
with probabilitywk and ifBk itself is a mixed strategy then
it is a probability distribution over pure strategies.

Corollary 9. Let {Bk}1≤k≤n be mixed strategies of player
i, Π =

∑n
k=1 wkBk,

∑n
k=1 wk = 1 a convex combination

of these mixed strategies and µ−i a completely mixed sam-
pling strategy profile that defines the behaviour of player
i’s opponents. Then for each information state u ∈ U i
the probability distribution of player i’s behaviour at u in-
duced by sampling from the strategy profile (Π, µ−i) de-
fines a behavioural strategy π at u and π is realization-
equivalent to Π.

Hence, the behavioural strategy π can be learned approx-
imately from a data set consisting of trajectories sampled
from (Π, µ−i). In fictitious play, at each iteration n we
want to learn the average mixed strategy profile Πn+1 =
n
n+1Πn + 1

n+1Bn+1. Both Πn and Bn+1 are available at
iteration n and we can therefore apply Corollary 9 to learn
for each player i an approximation of a behavioural strategy
πin+1 that is realization-equivalent to Πi

n+1. Let π̃in+1 be
such an approximation and Π̃i

n+1 its normal-form equiv-
alent. Then π̃in+1 is realization-equivalent to a perturbed
fictitious play update in normal-form, Πi

n+1 + 1
n+1M

i
n+1,

Fictitious Self-Play in Extensive-Form Games

where M i
n+1 = (n + 1)(Π̃i

n+1 − Πi
n+1) is a normal-form

perturbation resulting from the estimation error.

In this work we restrict ourselves to simple models that
count the number of times an action has been taken at an
information state or alternatively accumulate the respective
strategies’ probabilities of taking each action. These mod-
els can be incrementally updated with samples from βk at
each iteration k. A model update requires a set of sampled
tuples, (uit, ρ

i
t), where uit is agent i’s information state and

ρit is the policy that the agent pursued at this state when this
experience was sampled. For each tuple (ut, ρt) the update
accumulates each action’s weight at the information state,

∀a ∈ A(ut) : N(ut, a)← N(ut, a) + ρt(a)

∀a ∈ A(ut) : π(ut, a)← N(ut, a)

N(ut)

In order to constitute an unbiased approximation of an aver-
age of best responses, 1

k

∑k
j=1B

i
j , we need to accumulate

the same number of sampled episodes from each Bij and
these need to be sampled against the same fixed opponent
strategy profile µ−i. However, we suggest using the aver-
age strategy profile π−ik as the sampling distribution µ−i.
Sampling against π−ik has the benefit of focusing the up-
dates on states that are more likely in the current strategy
profile. When collecting samples incrementally, the use of
a changing sampling distribution π−ik can introduce bias.
However, in fictitious play π−ik is changing more slowly
over time and thus this bias should decay over time.

4.3. Algorithm

This section introduces a general algorithm of FSP. Each
iteration of the algorithm can be divided into three steps.
Firstly, episodes of the game are simulated from the agents’
strategies. The resulting experience or data is stored in two
types of agent memory. One type stores experience of an
agent’s opponents’ behaviour. The other type stores the
agent’s own behaviour. Secondly, each agent computes
an approximate best response by reinforcement learning
off-policy from its memory of its opponents’ behaviour.
Thirdly, each agent updates its own average strategy by su-
pervised learning from the memory of its own behaviour.

Algorithm 2 presents the general framework of FSP. It does
not specify particular off-policy reinforcement learning or
supervised learning techniques, as these can be instanti-
ated by a variety of algorithms. However, as discussed in
the previous sections, in order to constitute a valid ficti-
tious play process both machine learning operations require
data sampled from specific combinations of strategies. The
function GENERATEDATA uses a sampling strategy profile
σk = (1−ηk)πk−1+ηkβk, where πk−1 is the average strat-
egy profile of iteration k−1 and βk is the best response pro-
file of iteration k. The parameter ηk mixes between these

Algorithm 2 General Fictitious Self-Play
function FICTITIOUSSELFPLAY(Γ, n,m)

Initialize completely mixed π1

β2 ← π1

j ← 2
while within computational budget do
ηj ← MIXINGPARAMETER(j)
D ← GENERATEDATA(πj−1, βj , n,m, ηj)
for each player i ∈ N do
Mi

RL ← UPDATERLMEMORY(Mi
RL,Di)

Mi
SL ← UPDATESLMEMORY(Mi

SL,Di)
βij+1 ← REINFORCEMENTLEARNING(Mi

RL)

πij ← SUPERVISEDLEARNING(Mi
SL)

end for
j ← j + 1

end while
return πj−1

end function

function GENERATEDATA(π, β, n,m, η)
σ ← (1− η)π + ηβ
D ← n episodes {tk}1≤k≤n, sampled from strategy
profile σ
for each player i ∈ N do
Di ←m episodes {tik}1≤k≤m, sampled from strat-
egy profile (βi, σ−i)
Di ← Di ∪ D

end for
return {Dk}1≤k≤N

end function

strategy profiles. In particular, choosing ηk = 1
k results

in σk matching the average strategy profile πk of a ficti-
tious play process with stepsize αk = 1

k . At iteration k, for
each player i, we would simulate n episodes of play from
(πik, π

−i
k) and m episodes from (βik, π

−i
k). All episodes

can be used by reinforcement learning, as they constitute
experience against π−ik that the agent wants to best respond
to. For supervised learning, the sources of data need to
be weighted to achieve a correct target distribution. On
the one hand sampling from (πik, π

−i
k) results in the correct

target distribution. On the other hand, when performing in-
cremental updates only episodes from (βik, π

−i
k) might be

used. Additional details of data generation, e.g. with non-
full or finite memories are discussed in the experiments.

For clarity, the algorithm presents data collection from a
centralized point of view. In practice, this can be thought
of as a self-play process where each agent is responsible to
remember its own experience. Also, extensions to an on-
line and on-policy learning setting are possible, but have
been omitted as they algorithmically intertwine the rein-
forcement learning and supervised learning operations.

Fictitious Self-Play in Extensive-Form Games

5. Experiments
We evaluate the introduced algorithms in two parame-
terized zero-sum imperfect-information games. Leduc
Hold’em (Southey et al., 2005) is a small poker variant that
is similar to Texas Hold’em. With two betting rounds, a
limit of two raises per round and 6 cards in the deck it
is however much smaller. River poker is a game that is
strategically equivalent to the last betting round of Limit
Texas Hold’em. It is parameterized by a probability dis-
tribution over possible private holdings, the five publicly
shared community cards, the initial potsize and a limit on
the number of raises. The distributions over private hold-
ings could be considered the players’ beliefs that they have
formed in the first three rounds of a Texas Hold’em game.
At the beginning of the game, a private holding is sampled
for each player from their respective distribution and the
game progresses according to the rules of Texas Hold’em.

In a two-player zero-sum game, the exploitability of a
strategy profile, π, is defined as δ = R1

(
b1(π2), π2

)
+

R2
(
π1, b2(π1)

)
. An exploitability of δ yields at least a δ-

Nash equilibrium. In our experiments, we used exploitabil-
ity to measure learning performance.

5.1. Full-Width Extensive-Form Fictitious Play

We compared the effect of information-state dependent
stepsizes, λt+1 : U → [0, 1], on full-width extensive-
form fictitious play updates, πt+1(u) = πt(u) +
λt+1(u)(βt+1(u) − πt(u)),∀u ∈ U , where βt+1 ∈ b(πt)
is a sequential best response and πt is the iteratively up-
dated average strategy profile. Stepsize λ1

t+1(u) = 1
t+1

yields the sequential extensive-form fictitious play intro-
duced by Hendon et al. (1996). XFP is implemented by
stepsize λ2

t+1(u) =
xβt+1

(σu)

txπt (σu)+xβt+1
(σu) .

The average strategies were initialized as follows. At each
information state u, we drew the weight for each action
from a uniform distribution and normalized the resulting
strategy at u. We trained each algorithm for 400000 it-
erations and measured the average strategy profiles’ ex-
ploitability after each iteration. The experiment was re-
peated 5 times and figure 1 plots the resulting learning
curves. The results show noisy behaviour of each fictitious
play process that used stepsize λ1. Each XFP instance reli-
ably reached a much better approximate Nash equilibrium.

5.2. Fictitious Self-Play

We tested the performance of FSP with a fixed computa-
tional budget per iteration and evaluated how it scales to
larger games in comparison with XFP.

We instantiated FSP’s reinforcement learning method with
FQI and updated the average strategy profiles with a sim-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50000 100000 150000 200000 250000 300000 350000 400000

E
xp

lo
ita

bi
lit

y

Iterations

Extensive-Form Fictitious Play (stepsize 1)
XFP (stepsize 2)

Figure 1. Learning curves of extensive-form fictitious play pro-
cesses in Leduc Hold’em, for stepsizes λ1 and λ2.

ple counting model. We manually calibrated FSP in 6-card
Leduc Hold’em and used this calibration in all experiments
and games. In particular, at each iteration, k, FQI replayed
30 episodes with learning stepsize 0.05

1+0.003
√
k

. It returned
a policy that at each information state was determined by a
Boltzmann distribution over the estimated Q-values, using
temperature (1 + 0.02

√
k)−1. The state of FQI was main-

tained across iterations, i.e. it was initialized with the pa-
rameters and learned Q-values of the previous iteration. For
each player i, FSP used a replay memory,Mi

RL, with space
for 40000 episodes. Once this memory was full, FSP sam-
pled 2 episodes from strategy profile σ and 1 episode from
(βi, σ−i) at each iteration for each player respectively, i.e.
we set n = 2 and m = 1 in algorithm 2.

Because we used finite memories and only partial replace-
ment of episodes we had to make some adjustments to ap-
proximately correct for the expected target distributions.
For a non-full or infinite memory, a correct target dis-
tribution can be achieved by accumulating samples from
each opponent best response. Thus, for a non-full mem-
ory we collected all episodes from profiles (βi, σ−i) in al-
ternating self-play, where agent i stores these in its super-
vised learning memory,Mi

SL, and player−i stores them in
its non-full reinforcement learning memory, M−iRL. How-
ever, when partially replacing a full reinforcement learning
memory, Mi

RL, that is trying to approximate experience
against the opponent’s Π−ik = (1 − αk)Π−ik−1 + αkB

−i
k ,

with samples from Π−ik , we would underweight the amount
of experience against the opponent’s recent best response,
B−ik . To approximately correct for this we set the mixing
parameter to ηk = αk

γp , where p = n+m
MemorySize is the pro-

portion of memory that is replaced and the constant γ con-
trols how many iterations constitute one formal fictitious
play iteration. In all our experiments, we used γ = 10.
Both algorithms’ average strategy profiles were initialized

Fictitious Self-Play in Extensive-Form Games

to a uniform distribution at each information state. Each
algorithm trained for 300 seconds. The average strategy
profiles’ exploitability was measured at regular intervals.

Figure 2 compares both algorithms’ performance in Leduc
Hold’em. While XFP clearly outperformed FSP in the
small 6-card variant, in the larger 60-card Leduc Hold’em
it learned more slowly. This might be expected, as the com-
putation per iteration of XFP scales linearly in the squared
number of cards. FSP, on the other hand, operates only in
information states whose number scales linearly with the
number of cards in the game.

We compared the algorithms in two instances of River
poker that were initialized with a potsize of 6, a maximum
number of raises of 1 and a fixed set of community cards.
The first instance assumes uninformed, uniform player be-
liefs that assign equal probability to each possible holding.
The second instance assumes that players have inferred
beliefs over their opponents’ holdings. An expert poker
player provided us with belief distributions that model a
real Texas Hold’em scenario. The distributions assume that
player 1 holds one of 16% of the possible holdings with
probability 0.99 and a uniform random holding with prob-
ability 0.01. Similarly, player 2 is likely to hold one of 31%
holdings. The exact distributions and scenario are provided
in the appendix.

According to figure 3, FSP improved its average strategy
profile much faster than the full-width variant in both in-
stances of River poker. In River poker with defined beliefs,
FSP obtained an exploitability of 0.11 after 30 seconds,
whereas after 300 seconds XFP was exploitable by more
than 0.26. Furthermore, XFP’s performance was similar in
both instances of River poker, whereas FSP lowered its ex-
ploitability by more than 40%. River poker has about 10
million states but only around 4000 information states. For
a similar reason as in the Leduc Hold’em experiments, this
might explain the overall better performance of FSP. Fur-
thermore, the structure of the game assigns non-zero prob-
ability to each state of the game and thus the computational
cost of XFP is the same for both instances of River poker.
It performs computation at each state no matter how likely
it is to occur. FSP on the other hand is guided by sampling
and is therefore able to focus its computation on likely sce-
narios. This allows it to benefit from the additional struc-
ture introduced by the players’ beliefs into the game.

6. Conclusion
We have introduced two fictitious play variants for
extensive-form games. XFP is the first fictitious play algo-
rithm that is entirely implemented in behavioural strategies
while preserving convergence guarantees in games with the
fictitious play property. FSP is a sample-based approach

 0

 1

 2

 3

 4

 5

 6

 50 100 150 200 250 300

E
xp

lo
ita

bi
lit

y

Time in s

XFP, 6-card Leduc
XFP, 60-card Leduc

FSP:FQI, 6-card Leduc
FSP:FQI, 60-card Leduc

 0.01

 0.1

 1

 10

 1 10 100

Figure 2. Comparison of XFP and FSP:FQI in Leduc Holdem.
The inset presents the results using a logarithmic scale.

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300

E
xp

lo
ita

bi
lit

y

Time

XFP, River Poker (defined beliefs)
XFP, River Poker (uniform beliefs)

FSP:FQI, River Poker (defined beliefs)
FSP:FQI, River Poker (uniform beliefs)

 0.01

 0.1

 1

 10

 1 10 100

Figure 3. Comparison of XFP and FSP:FQI in River poker. The
inset presents the results using a logarithmic scale for both axes.

that implements generalised weakened fictitious play in a
machine learning framework. While converging asymptot-
ically to the correct updates at each iteration, it remains
an open question whether guaranteed convergence can be
achieved with a finite computational budget per iteration.
However, we have presented some intuition why this might
be the case and our experiments provide first empirical ev-
idence of its performance in practice.

FSP is a flexible machine learning framework. Its experi-
ential and utility-maximizing nature makes it an ideal do-
main for reinforcement learning, which provides a plethora
of techniques to learn efficiently from sequential experi-
ence. Function approximation could provide automated ab-
straction and generalisation in large extensive-form games.
Continuous-action reinforcement learning could learn best
responses in continuous action spaces. FSP has therefore a
lot of potential to scale to large and even continuous-action
game-theoretic applications.

Fictitious Self-Play in Extensive-Form Games

Acknowledgments
We would like to thank Georg Ostrovski, Peter Dayan,
Rémi Munos and Joel Veness for insightful discussions and
feedback. This research was supported by the UK Centre
for Doctoral Training in Financial Computing and Google
DeepMind.

References
Benaı̈m, Michel, Hofbauer, Josef, and Sorin, Sylvain. Stochastic

approximations and differential inclusions. SIAM Journal on
Control and Optimization, 44(1):328–348, 2005.

Bosansky, B, Kiekintveld, Christopher, Lisy, V, and Pechoucek,
Michal. An exact double-oracle algorithm for zero-sum
extensive-form games with imperfect information. Journal of
Artificial Intelligence Research, pp. 829–866, 2014.

Bowling, Michael, Burch, Neil, Johanson, Michael, and Tam-
melin, Oskari. Heads-up limit holdem poker is solved. Science,
347(6218):145–149, 2015.

Brown, George W. Iterative solution of games by fictitious play.
Activity analysis of production and allocation, 13(1):374–376,
1951.

Daskalakis, Constantinos and Pan, Qinxuan. A counter-example
to Karlin’s strong conjecture for fictitious play. In Foundations
of Computer Science (FOCS), 2014 IEEE 55th Annual Sympo-
sium on, pp. 11–20. IEEE, 2014.

Ernst, Damien, Geurts, Pierre, and Wehenkel, Louis. Tree-based
batch mode reinforcement learning. In Journal of Machine
Learning Research, pp. 503–556, 2005.

Fudenberg, Drew. The theory of learning in games, volume 2.
MIT press, 1998.

Ganzfried, Sam and Sandholm, Tuomas. Computing equilibria in
multiplayer stochastic games of imperfect information. In Pro-
ceedings of the 21st International Joint Conference on Artifical
Intelligence, pp. 140–146, 2009.

Gilpin, Andrew, Hoda, Samid, Pena, Javier, and Sandholm, Tuo-
mas. Gradient-based algorithms for finding Nash equilibria in
extensive form games. In Internet and Network Economics, pp.
57–69. Springer, 2007.

Greenwald, Amy, Li, Jiacui, Sodomka, Eric, and Littman,
Michael. Solving for best responses in extensive-form games
using reinforcement learning methods. The 1st Multidisci-
plinary Conference on Reinforcement Learning and Decision
Making (RLDM), 2013.

Heinrich, Johannes and Silver, David. Smooth UCT search in
computer poker. In Proceedings of the 24th International Joint
Conference on Artifical Intelligence, 2015. In press.

Hendon, Ebbe, Jacobsen, Hans Jørgen, and Sloth, Birgitte. Fic-
titious play in extensive form games. Games and Economic
Behavior, 15(2):177–202, 1996.

Hofbauer, Josef and Sandholm, William H. On the global conver-
gence of stochastic fictitious play. Econometrica, 70(6):2265–
2294, 2002.

Karlin, Samuel. Mathematical methods and theory in games, pro-
gramming and economics. Addison-Wesley, 1959.

Koller, Daphne, Megiddo, Nimrod, and Von Stengel, Bernhard.
Fast algorithms for finding randomized strategies in game
trees. In Proceedings of the 26th ACM Symposium on Theory
of Computing, pp. 750–759. ACM, 1994.

Koller, Daphne, Megiddo, Nimrod, and Von Stengel, Bernhard.
Efficient computation of equilibria for extensive two-person
games. Games and Economic Behavior, 14(2):247–259, 1996.

Kuhn, Harold W. Extensive games and the problem of informa-
tion. Contributions to the Theory of Games, 2(28):193–216,
1953.

Lambert III, Theodore J, Epelman, Marina A, and Smith,
Robert L. A fictitious play approach to large-scale optimiza-
tion. Operations Research, 53(3):477–489, 2005.

Lanctot, Marc, Waugh, Kevin, Zinkevich, Martin, and Bowling,
Michael. Monte Carlo sampling for regret minimization in ex-
tensive games. In Advances in Neural Information Processing
Systems 22, pp. 1078–1086, 2009.

Leslie, David S and Collins, Edmund J. Generalised weakened
fictitious play. Games and Economic Behavior, 56(2):285–298,
2006.

McMahan, H Brendan and Gordon, Geoffrey J. A fast bundle-
based anytime algorithm for poker and other convex games. In
International Conference on Artificial Intelligence and Statis-
tics, pp. 323–330, 2007.

Miltersen, Peter Bro and Sørensen, Troels Bjerre. Computing
a quasi-perfect equilibrium of a two-player game. Economic
Theory, 42(1):175–192, 2010.

Myerson, Roger B. Game Theory: Analysis of Conflict. Harvard
University Press, 1991.

Robinson, Julia. An iterative method of solving a game. Annals
of Mathematics, pp. 296–301, 1951.

Sandholm, Tuomas. The state of solving large incomplete-
information games, and application to poker. AI Magazine,
31(4):13–32, 2010.

Silver, David and Veness, Joel. Monte-Carlo planning in large
POMDPs. In Advances in Neural Information Processing Sys-
tems, pp. 2164–2172, 2010.

Southey, Finnegan, Bowling, Michael, Larson, Bryce, Piccione,
Carmelo, Burch, Neil, Billings, Darse, and Rayner, Chris.
Bayes bluff: Opponent modelling in poker. In In Proceed-
ings of the 21st Annual Conference on Uncertainty in Artificial
Intelligence (UAI, pp. 550–558, 2005.

Sutton, Richard S and Barto, Andrew G. Reinforcement learning:
An introduction, volume 1. Cambridge Univ Press, 1998.

Von Stengel, Bernhard. Efficient computation of behavior strate-
gies. Games and Economic Behavior, 14(2):220–246, 1996.

Watkins, Christopher JCH and Dayan, Peter. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

Zinkevich, Martin, Johanson, Michael, Bowling, Michael, and
Piccione, Carmelo. Regret minimization in games with incom-
plete information. In Advances in Neural Information Process-
ing Systems, pp. 1729–1736, 2007.

