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Abstract

Modelling human strategic behavior has been at the core of studies ranging from Computing
Science [20], Economics [2] to Politics [7] and beyond. All of these seemingly diverse perspectives
on prescribing a single explanation for how humans make decisions, have one certain property in
common that is, although Expected Utility Theory [37] is a deficient model of describing humans
strategic behaviors and models such as Prospect Theory [22] or, Cognitive Hierarchy [11] are better
descriptions for humans strategic behaviors, they all agree on a single fact that the main drive for
decision-making is maximizing a sense of the utility that the agents (for example humans) consider
for the outcomes of events. The differences of these perspectives are based on what aspects they
choose to investigate to justify the deviations that humans make from the ideal case of maximizing
the expected utility [37]. On the other hand, the nature of the real-world events imply that almost
everything happens more than one time (Infinite Monkey Theorem [5]) and if there are regularities
among occurrence of an event in different timesteps then, the concept of learning could be leveraged
to guarantee a certain kind of behavior through multiple encounters with a certain event [34]. In
this project we try to study Fictitious Play (FP) as an approach of learning in repeated games
and show that in contrast to the family of no-regret learning algorithms, this approach is more in
line with the original motive of decision-making which is maximizing a sense of the utility .

1 Motivation

The concept of learning is a very natural way of prescribing how agents should act and update their
strategies based on the experiences gained do far in a repeated game [34]. One class of learning algorithms
in repeated games is the family of no-regret algorithms [10]. Depending on the type of the regret that
a no-regret learner chooses to optimize, different types of behaviors with different types of guarantees
might be achieved (if at all). For example, [40] chose the counterfactual regret and showed that in a
repeated game with rational players, minimizing this regret is equivalent to finding ϵ-Nash equilibria in
zero-sum two player games. This method is widely accepted because at the end, the final performance
is measured with respect to Nash equilibrium, meaning that since rational agents are expected utility
maximizers [37], it does not matter how much the regret was minimized but how much the resulting
performance is close to Nash equilibrium.

1.1 Counterfactual Regret Minimization vs Fictitious Play

If the closeness to Nash equilibrium is the ultimate goal of measuring the success of a learning algorithm
for rational agents, then are no-regret learning algorithms the best to accomplish this goal? To answer
this question, [13] took counterfactual regret minimization (CFR [40]) as a representative of no-regret
learning algorithms and compared it against FP and empirically showed that as was promised, CFR gets
closer to Nash equilibrium in zero-sum two-player games but, in any other type of games, FP resulted in
a behavior closer to Nash equilibrium. They even empirically showed that there are zero-sum two-players
games that FP gives even a better result than CFR! The summary of their results are shown in Figure 1.
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(a) CFR gets closer than FP to Nash equilibrium only
in some zero-sum two-player games.

(b) There are zero-sum two player games and other type
of games that FP is closer to Nash equilibrium than
CFR.

Figure 1: CFR vs FP [13].

2 Fictitious Play

Fictitious Play was originally proposed as a way of computing Nash equilibria in zero-sum games [8, 32]
and in this settings, players don’t need to know the game they’re playing nor the payoffs of others [19].
In addition to its elegance and simplicity, one nice feature of FP compared to no-regret algorithms is its
directness toward computing the best response and Nash equilibrium as discussed in Section 1.

In FP, N players play a repeated game and in each round t ∈ N+, each agent i,∀i ∈ N plays a mixed
strategy πi

t such that:
πi
t+1 ∈ (1− αt+1)π

i
t + αt+1b

i(π−i
t ) (1)

Where π−i
t is the agent i’s belief about the mixed the strategy profile of all other players at round t and

could be the empirical distribution of their previous actions, bi(π−i
t ) is the set of best responses of the

player i to other players’ mixed strategy π−i
t that it had assumed for them in round t, αt = 1

t is the

step size and π−i
0 is the initial belief about other players’ strategies and πi

0 is the player’s i initial mixed
strategy.

2.1 Convergence of FP

The primary topic that should be discussed prior to performance when studying learning algorithms is
if the algorithm is convergent at all or not. If FP is convergent, it converges to Nash equilibrium [32].
But when is it?

2.1.1 Shapley’s Almost-Rock-Paper-Scissors

The biggest weakness of FP is its heavy reliance on the initial beliefs. For example, [33] introduced a non
zero-sum variant of the game of Rock-Paper-Scissors shown in Figure 2. The unique Nash equilibrium of
this game is for each player to play the mixed strategy ( 13 ,

1
3 ,

1
3 ) however, when π1

0 is initialized to (0, 0, 1
2 )

and π2
0 is initialized to (0, 1

2 , 0), it can be shown that the empirical play of this game never converges to
any fixed distribution.

2.1.2 Provably Convergent FP

Despite of FP’s sensitivity to initial beliefs, it is convergent in zero-sum games [32], Potential games1 [23,
4], 2 × n with generic payoffs games [3] and games that are solvable by iterated elimination of strictly
dominated strategies [28].

1A game is said to be a potential game if the incentive of all players to change their strategy can be expressed using a
single global function called the potential function [30].
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Figure 2: Shapley’s Almost-Rock-Paper-Scissors.

2.2 Approximation to FP

The original version of FP that was shown in Inclusion 1, as mentioned before, was introduced in [8, 32].
Later, [36] proved that the following version of FP is also convergent in games that original one is
convergent if, ϵt → 0 as t→∞:

πi
t+1 ∈ (1− αt+1)π

i
t + αt+1b

i
ϵt+1

(π−i
t ) (2)

Where the setting is exactly as before with the difference that biϵt+1
(π−i

t ) is the set of ϵt+1-best responses

of the player i to other players’ mixed strategy π−i
t that it had assumed for them in round t. ”Intuitively,

since these mistakes vanish asymptotically, such processes should also follow the best response in the
limit” [26].

Also, [1] showed that the beliefs for the opponents’ strategies should not be perfect and could be
perturbed and still FP would be convergent in games that original FP was convergent:

πi
t+1 ∈ (1− αt+1)π

i
t + αt+1b

i(π−i
t +M i

t+1) (3)

Where the setting is exactly as the original FP with the difference that M i
t+1 represents the perturbations

to the beliefs of player i at round t+ 1 about other players’ mixed strategy π−i
t that it had assumed for

them in round t with the additional condition that for all T > 0:

lim
t→∞

sup
k

{∥∥∥∥∥
k−1∑
i=t

αi+1Mi+1

∥∥∥∥∥ :

k−1∑
i=t

αi ≤ T

}
= 0

At last, [26] introduced the concept of Generalized Weakened Fictitious Play which says that
not only Inclusion 2 and Inclusion 3 are convergent separately, but their combination shown in Inclusion 4,
with the same set of conditions of each of the separately, is also convergent:

πi
t+1 ∈ (1− αt+1)π

i
t + αt+1b

i
ϵt+1

(π−i
t +M i

t+1) (4)

3 FP in Extensive-Form Games (XFP)

All of the convergence proof of any variants of FP was established in normal-form games however, the
practical scenarios happen in sequential format so, it is more appealing to have proof of convergence
for FP in extensive-form games. One easy but completely infeasible and impractical solution could be
to investigate the convergence of FP in the induced normal-form of the extensive-form representation
however, the resulting exponential representation is far from any practical interest. In this section we
try to show how the concept of realization equivalence that was initially introduced in [24] could be
an elegant way of suppressing the need of transforming the extensive-form into the induced normal-form
to prove the convergence of XFP and as a result, having the possibility to perform behavioral strategies!
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3.1 Realization Equivalence

For any player i ∈ N of a prefect-recall extensive-form game, each of their information sets hi ∈ Ii

where Ii is the set of all of the information sets of the player i, uniquely defines a sequence σhi of
actions that the player is required to take in order to reach information set hi. Let Σi = {σh : h ∈ Ii}
denote the set of such sequences for player i. Furthermore, let σha denote the sequence that extends σh

with action a.

Definition 1 (Realization Plan [38]). A realization plan of player i ∈ N is a function, x : Σi → [0, 1],
such that x(∅) = 1 and ∀h ∈ Ii : x(σh) =

∑
a∈χ(h) x(σha). where χ is the action function.

For example a behavioral strategy π induces a realization plan xπ(σh) =
∏

(h′,a)∈σh
π(h′, a),∀h ∈ I,

where the notation (h′, a) disambiguates actions taken at different information sets. Similarly, a realiza-

tion plan induces a behavioral strategy π(h, a) = x(σh,a)
x(σh)

where π is defined arbitrarily at information

sets that are never visited, i.e. when x(σh) = 0.
The following definition and theorems connect an extensive-form game’s behavioral strategies with

mixed strategies of the equivalent normal-form representation:

Definition 2 (Realization Equivalence [17]). Two strategies π1 and π2 of a player are realization-
equivalent if for any fixed strategy profile of the other players both strategies, π1 and π2, define the same
probability distribution over the states of the game.

Theorem 1 ([38]). Two strategies are realization-equivalent if and only if they have the same realization
plan.

Theorem 2 ([24]). For a player with perfect recall, any mixed strategy is realization-equivalent to a
behavioral strategy, and vice versa.

3.2 XFP vs Normal-Form FP

In this section we derive a process in behavioral strategies that is realization equivalent to normal-form
fictitious play and accomplishing the goal of remaining in the extensive-form space.

Lemma 1 ([17]). Let π and β be two behavioral strategies, P and B two mixed strategies that are
realization equivalent to π and β, xκ the realization plan corresponding to the behavioral strategy κ, and
γ1, γ2 ∈ R≥0 with γ1 + γ2 = 1. Then, for each information set h ∈ I,

µ(h) = π(h) +
γ2xβ(σh)

γ1xπ(σh) + γ2xβ(σh)

(
β(h)− π(h)

)
defines a behavioral strategy µ at h and µ is realization equivalent to the mixed strategy M = γ1P +γ2B.

Proof. The realization plan of M = γ1P + γ2B is

xM (σh) = γ1xP (σh) + γ2xB(σh),∀h ∈ I

and due to realization equivalence, xP (σh) = xπ(σh) and xB(σh) = xβ(σh),∀h ∈ I. This realization plan
induces a realization equivalent behavioral strategy:

µ(h, a) =
xM (σha)

xM (σh)
=

γ1xπ(σha) + γ2xβ(σha)

γ1xπ(σh) + γ2xβ(σh)
=

γ1xπ(σh)π(h, a) + γ2xβ(σh)β(h, a)

γ1xπ(σh) + γ2xβ(σh)

= π(h, a) +
γ2xβ(σh)

γ1xπ(σh) + γ2xβ(σh)

(
β(h, a)− π(h, a)

)

Now it is obvious that if we replace π with πi
t, β with bi(π−i

t ) (or its ϵ version), γ1 with 1−αt+1 and
γ2 with αt+1, the realization equivalence from behavioral strategies in extensive-from to mixed strategies
in normal-from is accomplished in FP. So, the following theorem presents a fictitious play in behavioral
strategies that inherits the convergence results of generalized weakened fictitious play by the virtue of
realization equivalence.
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Theorem 3 ([17]). Let π0 be an initial behavioral strategy profile. The extensive-form process

βi
t+1 ∈ biϵt+1

(π−i
t )

πi
t+1(h) = πi

t(h) +
αt+1xβi

t+1
(σh)

(1− αt+1)xπi
t
(σh) + αt+1xβi

t+1
(σh)

(
βi
t+1(h)− πi

t(h)
)

for all player i ∈ N and all their information sets h ∈ I is realization equivalent to a generalized
weakened fictitious play in the normal-form, with the same convergence conditions of generalized weakened
fictitious play [26], and therefore the average strategy profile converges to a Nash equilibrium in games
that generalized weakened fictitious play does.

Proof. By induction. Assume the behavioral strategy πt and the mixed strategy Pt are realization
equivalent and βt+1 ∈ bϵt+1(πt) is and ϵt+1-best response to πt. By Kuhn’s Theorem [24], let Bt+1 be
any mixed strategy that is realization equivalent to βt+1. Then, Bt+1 is an ϵt+1-best response to Pt in
the normal form. By Lemma 1, the update in behavioral policies, πt+1 is realization equivalent to the
following update in mixed strategies

Pt+1 = (1− αt+1)Pt + αt+1Bt+1

and thus follows a generalized weakened fictitious play.

4 Fictitious Self-Play (FPS)

XFP, as was introduced in Section 3, suffers from the curse of dimensionality; At each iteration, computa-
tion needs to be performed at all states of the game irrespective of their relevance. However, generalised
weakened fictitious play shown in Equation 4 only requires approximate best responses and even allows
some perturbations in the updates.

FSP replaces the two fictitious play operations, best response computation and average strategy
updating, with machine learning algorithms. Approximate best responses are learned by reinforcement
learning from playing against the opponents’ average strategies. The average strategy updates can be
formulated as a supervised learning task, where each player learns a transition model of the average
responses.

4.1 Estimating the Best Response

Consider an extensive-form game and some strategy profile π. Then for each player i ∈ N the strategy
profile of their opponents, π−i defines an MDP, M(π−i) [35, 16]. The MDP’s dynamics are given by
the rules of the extensive-form game, the chance function and the opponents’ fixed strategy profile. The
rewards are given by the game’s payoff function. An ϵ-optimal policy of the MDP, M(π−i), therefore
yields an ϵ-best response of player i to the strategy profile π−i. Thus the iterative computation of
approximate best responses can be formulated as a sequence of MDPs to solve approximately, e.g. by
applying reinforcement learning to samples of experience from the respective MDPs.

While generalised weakened fictitious play allows ϵt-best responses at iteration t, it requires that ϵt
vanishes asymptotically such that ϵt → 0 as t→∞ [26, 36]. Corollary 1 bounds the absolute amount by
which reinforcement learning needs to improve the best response profile to achieve a monotonic decay of
the optimality gap ϵt.

Corollary 1 ([17]). Let Π denote the set of behavioral strategies in a two-player zero-sum extensive-
form game with maximum payoff range R̄ = maxπ∈ΠR(π) − minπ∈ΠR(π). Consider a fictitious play
process in this game. Let Pt be the average strategy profile at iteration t, Bt+1 a profile of ϵt+1-best
responses to Pt, and Pt+1 = (1 − αt+1)Pt + αt+1Bt+1 the usual fictitious play update for some stepsize
αt+1 ∈ (0, 1). Then for each player i, Bi

t+1 is an [ϵt + αt+1(R̄− ϵt)]-best response to Pt+1.

[17] used Fitted Q-Learning [12] as the reinforcement learning method to find the best response. It
learns from data sets of sampled experience; at each iteration t, FSP samples episodes of the game from
self-play where each agent adds its experience to its replay memory. Each episode is in the form of,
E = {(ht′ , at′ , rt′ , ht′+1)}0≤t′≤T , T ∈ N, where ht′ , at′ , rt′+1 correspond to the current information set,
the action taken, the resulting payoff at the timestep t′ of the episode recorded in round t.
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4.2 Estimating the Opponents’ Mixed Strategy2

Consider the point of view of a particular player i with the set of available actions A and the set of mixed
strategies S = ∆(A) who wants to learn a behavioral strategy π that is realization equivalent to mixed

strategy P which is a convex combination of their own normal-form mixed strategies, P =
∑|S|

k=1 wk.S(k)

with
∑|S|

k=1 wk = 1. This task is equivalent to learning a model of the player’s behavior when it is sampled
from P . Lemma 1 describes the behavioral strategy π explicitly, while in a sample-based setting we use
samples from the realization equivalent strategy P to learn an approximation of π. We can sample from
P by sampling from each constituent S(k) with probability wk.

Let π̃−i
t be the approximated behavioral strategy of the opponents’ of player i at round t+ 1 (note

that the best response of player i at round t + 1 is with respect to its belief about opponents’ round t
strategy3) and P̃−i

t be its normal-form mixed strategy equivalent then, π̃−i
t is realization-equivalent to

a perturbed fictitious play update in normal-form, π−i
t + αt+1M

i
t+1 where M i

t+1 = 1
αt+1

(π̃−i
t − π−i

t ) is a

normal-form perturbation resulting from the estimation error.
[17] restrict themselves to simple models that count the number of times an action has been taken

at an information state or alternatively accumulate the respective strategies’ probabilities of taking each
action. Their model update requires a set of sampled tuples, (hi

t, ρ
i
t), where hi

t is agent i’s information
set and ρit is the policy that the agent pursued at this information set when this experience was sampled.
For each tuple (hi

t, ρ
i
t) the update accumulates each action’s weight at the information state,

∀a ∈ χ(ht) : N (ht, a)← N (ht, a) + ρt(a)

∀a ∈ χ(ht) : π̃(ht, a)←
N (ht, a)

N (ht)

The summary of SFP procedure is shown in Figure 3 and is results compared to XP are shown in
Figure 4.

4.3 Neural SFP

By the virtue of approximation possibilities that SFP brought to life, more advanced estimation tech-
niques can be applied to solve more complex and larg-scale problems using this paradigm. Neural Self
Fictitious-Play (NSFP [18]) used Deep Reinforcement Learning [29, 31] and Neural Networks [25] for
approximating the best responses and average strategies explained before in very large-scale problems
thus, closer to real-world applications. For example, CFR [40], its extensions [6, 21] and other works [14]
that tried to tackle the game of Limit Texas Hold’em Poker that has an order of 1017 states and 1014

information sets, hand-engineered the state representations and introduced hand-designed abstractions
to reduce the state space size to be able to apply their methods. [39] used function approximation to
abstract the game to a tractable size but, their full-width algorithm has to implicitly reason about all
information sets at each iteration, which is prohibitively expensive in large domains. In contrast to all of
those methods, NFSP focuses on the sample-based reinforcement learning setting where the game’s states
need not be exhaustively enumerated and the learner may not even have a model of the game’s dynamics
thus, scaling end-to-end to learn approximate Nash equilibria without prior domain knowledge. Further-
more, developments in continuous-action reinforcement learning [27] could enable NFSP to be applied
to continuous-action games, which game-theoretic methods deal with a great level of sophistication [15].

Also later [9] introduced Deep CFR, a variant of CFR that deployed Neural Networks [25] to make
CFR scalable to large problems and showed that their approach outperforms NSFP in terms of sample
complexity, depicted in Figure 5b. However, (i) they compare their result in the game of Leduc Hold’em
Poker which is a smaller variant of Limit Texas Hold’em Poker that NSFP demonstrated superhuman
performance in, so it is not clear how their algorithm would be ranked in that larger game against NSFP
and (ii) they report that:

2In the original work, the emphasis was on the agent learning her own average mixed strategy but, its rationale was
basically estimating the opponent’s strategy who is updating her own strategy in the same manner.

3Refer to Inclusion 4 for clarification.

6



Figure 3: Summary of SFP [17].

”We observe that Deep CFR reaches an exploitability of 37 mbb/g4 while NFSP converges to 47 mbb/g.
We also observe that Deep CFR is more sample efficient than NFSP. However, these methods
spend most of their wallclock time performing SGD steps, so in our implementation we
see a less dramatic improvement over NFSP in wallclock time than sample efficiency.”

Figure 5 summarizes the performance of NSFP. [18] compared the performance of NSFP against
SmooCT, one of the top 3 computer programs of Annual Computer Poker Competition that featured
Limit Texas Hold’em Poker in 2014. [9] ran NFSP with the same model architecture as they used for
Deep CFR to benchmark their sample complexity.

5 Conclusion

In this work, we tried to reiterate the correct objective when describing strategic behaviors using game
theoretic perspectives is employed. The concept of learning is an inextricable tool in describing the
pattern in the observed behavior or, prescribing how the desired behavior could be achieved over the
course of time [34]. Thus, we reemphasized that learning should be studied with compatible motives
of game theory, maximizing a sense of the utility, that for rational agents happens to be the expected
utility. In this regard, we showed that no-regret algorithms, though achieving the desired goal, require
delicate design and interpretations to relate to the desired maximization. As a replacement for this
family of learning algorithms, we chose Fictitious play that because of incorporating the notion of best

4milli big blinds per game
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(a) Leduc Holdem. In small Games XPF is converging
faster while in large games SFP.

(b) River poker. The convergence rate of SFP is not
sensitive to the initial beliefs.

Figure 4: Comparison of XFP and FSP-FQI. The inset presents the results using a logarithmic scale.

(a) Limit Texas Hold’em Poker. Win rates against
SmooCT.

(b) Leduc Hold’em. Deep CFR achieves lower ex-
ploitability than NFSP with less samples.

Figure 5: NSFP performance.

response in its mechanism, is more in lined with game-theoretic perspectives. Fictitious Play allows to
leverage approximations which in return opens the door to the world of many advanced and powerful
machine learning algorithms useful for solving large-scale real-world problems that were not possible to
do in classic game theory.

At last, we mentioned the state-of-the-art no-regret learning method that is also applicable to large-
scale problems and we showed that although that method has the edge on its Fictitious Play counterpart
in terms of sample complexity, their wallclock time as the quantity that is the main practical interest,
are roughly the same. The no-regret algorithm was introduced almost 4 years later and it did not
consider that NSFP could benefit from all of the advances happened in reinforcement learning literature
in the meantime, and it used the original NSFP in their comparisons while as an advantage, Fictitious
Play’s compatibility with reinforcement learning makes this approach sustainable and naturally improved
whenever a breakthrough occurs in the reinforcement learning community.
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