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Abstract

We explore the learnability of two-valued functions from samples us-
ing the paradigm of Data Compression. A first algorithm (compression)
choses a small subset of the sample which is called the kernel. A second
algorithm predicts future values of the function from the kernel, i.e. the
algorithm acts as an hypothesis for the function to be learned. The second
algorithm must be able to reconstruct the correct function values when
given a point of the original sample. We demonstrate that the existence of
a suitable data compression scheme is sufficient to ensure learnability. We
express the probability that the hypothesis predicts the function correctly
on a random sample point as a function of the sample and kernel sizes.
No assumptions are made on the probability distributions according to
which the sample points are generated.

This approach provides an alternative to that of [BEHW86], which
uses the Vapnik-Chervonenkis dimension to classify learnable geometric
concepts. Our bounds are derived directly from the kernel size of the
algorithms rather than from the Vapnik-Chervonenkis dimension of the
hypothesis class. The proofs are simpler and the introduced compres-
sion scheme provides a rigorous model for studying data compression in
connection with machine learning.

1 INTRODUCTION

In many learning problems one is learning a concept which is a subset of some
sample domain. We consider the situation in which the points presented to
the learner are selected at random from the sample domain according to some
probability distribution. We study bounds on the rate of learning which are
independent of the probability distribution, following an approach introduced
by Valiant [V84]. In this paper we show that for a certain naturally arising class
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of learning algorithms, the bounds depend only on a simple characteristic of the
algorithm (the size of what we call the kernel).

The learning model is as follows: Let X denote the sample domain. We
are to learn concepts, which are subsets of X, from samples. Concepts are
represented by their indicator function, i.e. a concept ξ is a mapping from X into
{0, 1}. During the learning process we will be given a sequence of observations
of a particular concept ξ of some class C of concepts. Learning corresponds to
finding a hypothesis that predicts the concept ξ with small error. The hypothesis
is itself a concept, though not necessarily in C.

Observations are elements of L(X) = X × {0, 1} and m-samples are se-
quences of (X × {0, 1})m which we denote by L(Xm). We call m the size of
such a sample. We are given a sample whose zero-one labels are determined by
a particular ξ of class C: For any point y ∈ X, let Lξ(y) = (y, ξ(y)) and for a
sequence x̄ of m observations, let Lξ(x̄) = (Lξ(x1), ..., Lξ(xm)).

As an example, the sample domain might be E2, the Euclidean plane. A
class of concepts would be some collection of figures, e.g. the set of all triangular
regions. The aim is to learn a particular triangle. We receive observations of
that triangle, i.e. points on the plane with labels 0 or 1 according to whether
or not they are in the triangle.

Let P be an arbitrary but fixed probability distribution on X (in our exam-
ple, on the points of the plane). The points of the sample are drawn according
to this distribution and labeled with some ξ of C. After drawing m samples
the learning algorithm forms an hypothesis. As in [V84] and [BEHW86] the
hypothesis is evaluated with the same distribution P . The error of the hypoth-
esis is the probability (according to P ) that the hypothesis disagrees with ξ on
the next random point of X, drawn according to P . A learning algorithm must
have the following properties ([V84], [BEHW86]):

(L1) The error can be made arbitrarily small with arbitrarily high probability
by taking m large enough. The bounds on m are to be independent of the
concept ξ we are trying to learn and of the underlying distribution P .

(L2) The bounds on m are to be polynomial in the inverse of the error probabil-
ities. Also the computation of the hypothesis as well as the computation
of the value of the hypothesis for a given point must be polynomial in the
length of the sample.

A class of concepts for which there exists an algorithm that fulfills (L1) is
called learnable. If (L2) holds as well then the class is polynomially learnable.
Condition (L1) is formalized by demanding error greater than ε with probability
at most δ for small ε and δ, uniformly for all concepts in C. Condition (L2)
implies that the number of required samples is a function m(ε, δ) that grows
polynomially in 1/ε and 1/δ.

In [BEHW86] necessary and sufficient conditions for learnability are given
in terms of the Vapnik-Chervonenkis dimension [VC 71] of the concept class.
Bounds on the rate of learning are given which are functions of the Vapnik-
Chervonenkis dimension. The results are non-constructive in the sense that
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they lead to no specific algorithm for learning. Using the results of that paper,
the steps to constructing a learning algorithm and verifying that it learns with
a polynomial number of sample points are:

(S1) Construct an algorithm which, given any finite sample, generates a hy-
pothesis that is consistent with the sample. In the main theorem it is
required that the hypothesis be a member of the class of concepts being
learned. Later they allow other hypothesis classes.

(S2) Find the Vapnik-Chervonenkis dimension of the class from which the hy-
potheses are chosen. A finite dimension demonstrates learnability and
yields bounds on the speed of learning.

Our approach is motivated by various examples found in that paper. In
a number of those examples, an algorithm is given in which the hypothesis
is specified in terms a fixed-size subsample of the given labeled sample. For
example, the concept of an orthogonal rectangle in the plane is determined by
four observations. In a sense the sample of size m is compressed to a sample
of fixed size. From the compressed sample the labels of the original m-sample
can be reconstructed. Similarly other figures in Er like polygons, half spaces,
etc, are determined by a small number of points. Another example of this is the
algorithm of [BL86] which uses two points to determine a half-plane in E2.

In this paper, we show that if an algorithm has this characteristic of data
compression (more explicitly specified below) then that alone is sufficient to
guarantee learnability; it is not necessary to refer to the Vapnik-Chervonenkis
dimension. In other words, we can leave out step (S2). Also, we do not require
that the hypotheses themselves lie in any particular class of concepts; they
can be arbitrary Borel sets of X. Bounds on the rate of learning are given in
terms of the size of the compressed subsample (we call this the kernel size). In
examples of learning geometric concepts which we have examined, these bounds
are better than the bounds derived from the Vapnik-Chervonenkis dimension.
The precise general relation between the bounds yielded by the two approaches
is not known. The difficulty of finding a general relationship between the bounds
reflects a substantial difference between the two approaches which should make
them valuable supplements of each other. We expect the data compression
algorithms described here to exist for a wide variety of concept classes, providing
an easily applied alternative to the approach of [BEHW86].

Our basic results relating data compression to learnability are based on the
conditions (L1) and (L2). The proof technique used is amenable to relaxation
of these conditions. After presenting the basic compression scheme we suggest
some extensions.

Notation Sequences or tuples are denoted with barred variables, i.e. the
elements of Xm are denoted with x̄. The i-th point of x̄ is xi, for 1 ≤ i ≤ m. A
subsequence of x̄ is a sequence xt1 , xt2 , ..., xtk , s.t. 1 ≤ t1 < t2 < ... < tk ≤ m.
IQ denotes the indicator function of set Q.
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2 THE BASIC COMPRESSION SCHEME

In this section we study learnability in relation to the basic compression scheme
presented in the introduction.

We consider data compression schemes of the following form: Given a con-
cept class C, a data compression scheme with kernel-size k consists of a pair of
mappings

κ :
∞⋃
m=k

L(Xm)→ L(Xk) and ρ : L(Xk)×X → {0, 1}

such that

(C1) For any ξ ∈ C and any x̄ ∈ Xm, for any m ≥ k, κ(Lξ(x̄)) is a subsequence
of length k of Lξ(x̄).

(C2) For any ξ ∈ C, anym, any x̄ ∈ Xm, and any point xi of x̄, ρ(κ(Lξ(x̄)), xi) =
ξ(xi).

We call κ(Lξ(x̄)) the kernel of the sample. The second condition specifies that ρ
reconstructs the labels of the sample points correctly. We say that ρ(κ(Lξ(x̄)), .)
is consistent with ξ on x̄. Usually both mappings are given by algorithms. We
assume that the reconstruction function ρ is Borel measurable. (This holds,
for example, for functions on Rn built recursively from ordinary comparison
and arithmetic operations.) Throughout the paper, we also assume that the
concepts in C are Borel measurable. Note that to make our notation simple we
assume that kernels always have the same size and the sample-size m is always
at least k. We define the kernel size of a concept class to be the minimum kernel
size of all compression schemes.

A data compression scheme of this form can be used as the basis of a learning
algorithm. Given a labeled sample, Lξ(x̄), the algorithm makes the hypothesis
that the concept is the set {y : ρ(κ(Lξ(x̄)), y) = 1}. Determining the kernel with
κ corresponds to computing the hypothesis, i.e. the kernel encodes the hypoth-
esis. The computation of the value of the hypothesis is achieved with ρ using
the kernel as an input. To fullfil the condition L2 for polynomial learnability the
algorithms ρ and κ must be polynomial in the length their input and the sample
size m(ε, δ) must be polynomial in 1

ε and 1
δ . We show that whenever there is a

compression scheme with fixed kernal size then m(ε, δ) is always polynomial in
1
ε and 1

δ .
The basic scheme is appealing because of its simplicity and generality. The

sample is compressed to the kernel but ρmust be able to reconstruct the values of
the sample. Note that we don’t require any bounds on the length of the encoding
of the kernel. The points of X might for instance be reals of arbitrary high
precision. Compression to a bounded number of bits is discussed in [BEHW87]
and is much simpler.

Theorem 2.1 For any compression scheme with kernel size k the error is
larger than ε with probability (w.r.t. Pm) less than

(
m
k

)
(1− ε)m−k when given

a sample of size m ≥ k.
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Proof: Suppose we are learning some concept ξ. Given an ε and an m, we
want to find a bound on the probability of choosing an m-sample which leads
to a hypothesis with error greater than ε. In other words, we want to bound
the error probability Pm(E) where

E = {x̄ ∈ Xm : P ({y : ρ(κ(Lξ(x̄)), y) 6= ξ(y)}) > ε}.

Equivalently,

E = {x̄ ∈ Xm : P ({y : ρ(κ(Lξ(x̄)), y) = ξ(y)}) < 1− ε}.

Let T be the collection of all k-element subsequences of the sequence (1, 2, ...,m).
For any t̄ = (t1, ..., tk) ∈ T , let

At̄ = {x̄ ∈ Xm : κ(Lξ(x̄)) = Lξ(xt1 , ..., xtk)}

Et̄ = {x̄ ∈ At̄ : P ({y : ρ(κ(Lξ(x̄)), y) = ξ(y)}) < 1− ε}
Ut̄ = {x̄ ∈ Xm : P ({y : ρ(Lξ(xt1 , ..., xtk), y) = ξ(y)}) < 1− ε}.

Bt̄ = {x̄ ∈ Xm : markρ(Lξ(xt1 , ..., xtk), xi) = ξ(xi),

for all xi with i /∈ t̄}.
We have Et̄ = E ∩ At̄ and since Xm =

⋃
t̄∈T At̄, E =

⋃
t̄∈T Et̄. From the

definition of At̄ we get

Et̄ = {x̄ ∈ At̄ : P ({y : ρ(Lξ(xt1 , ..., xtk), y) = ξ(y)}) < 1− ε}.

Thus Et̄ = Ut̄ ∩ At̄. The Condition (C2) guarantees that At̄ ⊂ Bt̄. Roughly,
these sets serve us as follows: We split Xm into the At̄ (which only overlap where
m-samples have repeated points). We then look at the intersection of E with
each of these At̄. Extending these intersections to the sets Ut̄ ∩ Bt̄ eliminates
explicit dependence of the sets on κ and gives us sets whose probabilities can
be easily bounded. We have

Pm(Et̄) ≤ Pm(Bt̄ ∩ Ut̄).

It will now be convenient to rearrange the coordinates. Let πt̄ be any permuta-
tion of 1, 2, ...,m which sends i to ti, for i = 1, ..., k. Let φt̄ : Xm → Xm send
(x1, x2, ..., xm) to (xπt̄(1), xπt̄(2), ..., xπt̄(m)). We have

Pm(Bt̄ ∩ Ut̄) = Pm(φt̄(Bt̄) ∩ φt̄(Ut̄)) =
∫
φt̄(Ut̄)

Iφt̄(Bt)dP
m.

Note that

φt̄(Ut̄) = {x̄ ∈ Xm : P ({y : ρ(Lξ(x1, ..., xk), y) = ξ(y)}) < 1− ε}.

Thus there exists some set Vt̄ ⊂ L(Xk) such that φt̄(Ut̄) = Vt̄ × Xm−k. By
Fubini’s Theorem∫

φt̄(Ut̄)

Iφt̄(Bt)dP
m =

∫
Vt̄

dP k
∫
Xm−k

Iφt̄(Bt)dP
m−k.
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We have

φt̄(Bt̄) = {x̄ ∈ Xm : ρ(Lξ(x1, ..., xk), xi) = ξ(xi), fori = k + 1, ...,m}.

Let
Wx1,...,xk = {y ∈ X : ρ(Lξ(x1, ..., xk), y) = ξ(y)}

Now
(x1, ..., xk)×Xm−k ∩ φt̄(Bt̄) = (x1, ..., xk)×Wm

x1,...,xk
− k.

Thus the inner integral equals Pm−k(Wm−k
x1,...,xk

). Since (x1, ..., xk) ∈ Vt̄ we have
P (Wx1,...,xk) < 1 − ε. Thus the inner integral is bounded by (1 − ε)m−k. This
then bounds the entire integral, and we get

Pm(Et̄) < (1− ε)m−k.

Since the size of T is
(
m
k

)
, we have

Pm(E) <
(
m

k

)
(1− ε)m−k.

�
Remark: The proof depends on the measurability of the sets Wx1,...,xk , Ut̄,

and Bt̄. The measurability of Wx1,...,xk and Bt̄ follows from the measurability
of ρ using the fact that compositions of Borel measurable functions are Borel
measurable. To see the measurability of Ut̄, let

W = {(x̄, y) : ρ(Lξ(xt1 , ..., xtk), y) = ξ(y)}

The set W is measurable, so the function

w(x̄) = P ({y : (x̄, y) ∈W})

is measurable. (This follows by a simple case of Fubini’s theorem ([R74]).) Thus
Ut̄ = {x̄ : w(x̄) < 1− ε} is measurable.

In the following theorem we give explicit bounds for the sample size that
guarantee learnability. A similar bound m ≥ max

(
4
ε log 2

δ ,
8d
ε log 8d

ε

)
was given

in [BEHW86], where d denotes the Vapnik-Chervonenkis dimension of the class
to be learned. For example, in the case of learning n-dimensional orthogonal
rectangles the dimension is 2n. The kernel size of the straight forward com-
pression scheme is also 2n. Thus the bounds stated in the following theorem
are better roughly by a factor of two. The dimension and the kernel size are
not always equal. In the case of arbitrary halfplanes the dimension is three but
there exists an algorithm with kernel size two ([BL86]).

Theorem 2.2: Any compression scheme with kernel-size k ≥ 1 produces
with probability at least 1 − δ a hypothesis with error at most ε when given a
sample of size

m ≥ max(
2
ε

ln(
1
δ

),
4k
ε

ln(
4k
ε

) + 2k).
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This holds for arbitrary ε and δ.
Proof: Follows from the bound of the previous theorem. Applying the

previous theorem it suffices to show that if m fulfills the bound then
(
m
k

)
(1 −

ε)m−k ≤ δ. This can be rewritten as

m ≥
ln 1

δ + ln
(
m
k

)
− ln(1− ε)

+ k

which holds if

m ≥ 1
ε

(ln
1
δ

+ k ln(m)) + k =
1
ε

(ln
1
δ

) + k(
1
ε

ln(m) + 1)

There are two summands in the last expression. The inequality certainly holds
if each summand is at most m

2 . For the first summand this easily leads to the
first bound in the maximum expression of the theorem. Similarly the second
summand will lead to the second bound. If

m

2
≥ k(

1
ε

ln(m) + 1)

holds when m is equal to the second bound then it also holds for larger m.
Replacing m by the second bound in the above inequality leads to

2k
ε

ln(
4k
ε

) + k ≥ k

ε
(ln(

4k
ε

) + ln(ln(
4k
ε

) +
ε

2
)) + k,

which simplifies to 4k
ε ≥ ln(4k

ε ) + 1
2 and can easily be verified. �

3 ADDITIONAL INFORMATION

In this section we extend the basic scheme by allowing additional information
besides the kernel. The m-sample is compressed to an element of some finite set
Q besides a kernel of size k. The set Q represents the additional information
which κ is providing to ρ. Now ρ receives an element of Q and the kernel as an
input. More exactly κ and ρ are redefined as follows:

κ :
∞⋃
m=k

L(Xm)→ Q× L(X)k, ρ : Q× L(Xk)×X → {0, 1}

For example if one wants to learn unions of n orthogonal rectangles, then we
clearly need 4n observations. But which observation belongs to what rectangle?
The 4n observations must be a subsequence of the original sample. We need the
additional information to specify a particular permutation of the 4n points. Af-
ter permuting, the first four points might determine the first rectangle, the next
four points the second rectangle and so forth. Given the additional information,
ρ knows the locations of the rectangles and can predict accordingly.
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We now generalize the theorems of the previous section. The case k = 0 in
which the sample is compressed to ln(|Q|) bits was studied in [BEHW87] Our
bounds always contain the bounds of [BEHW87] as a subcase.

Theorem 3.1:
For a compression scheme with kernel size k and additional information Q

the error is larger than ε with probability less than |Q|
(
m
k

)
(1− ε)m−k when given

a sample of size m ≥ k.
Proof: This proof is an extension of the proof of Theorem 2.1. Again we

want to bound Pm(E) where

E = {x̄ ∈ Xm : P ({y : ρ(κ(Lξ(x̄)), y) = ξ(y)}) < 1− ε}.

The index set T is extended with Q. The sequences of T now consist of an
element of Q followed by an k-element subsequence of (1, 2, ...,m). We adapt
the definitions of At̄, Et̄, Ut̄ and Bt̄. For any t̄ = (t0, t1, ..., tk) ∈ T ,

At̄ = {x̄ ∈ Xm : κ(Lξ(x̄)) = (t0, Lξ(xt1), ..., Lξ(xtk))}

Et̄ = {x̄ ∈ At̄ : P ({y : ρ(t0, Lξ(xt1), ..., Lξ(xtk), y) = ξ(y)}) < 1− ε}.

Ut̄ = {x̄ ∈ Xm : P ({y : ρ(t0, Lξ(xt1), ..., Lξ(xtk), y) = ξ(y)}) < 1− ε}.

Bt̄ = {x̄ ∈ Xm : ρ(t0, Lξ(xt1), ..., Lξ(xtk), xi) = ξ(xi),

for all xi with i /∈ {ti : 1 ≤ i ≤ k}}.

Again we have
Pm(Et̄) ≤ Pm(Bt̄ ∩ Ut̄).

and we rearrange the coordinates. For any permutation πt̄ of 1, 2, ...,m which
sends i to ti, for i = 1, ..., k, let φt̄ : Q×Xm → Q×Xm send (t0, x1, x2, ..., xm)
to (t0, xπt̄(1), xπt̄(2), ..., xπt̄(m)). phi rearranges Ut̄ and Bt̄:

φt̄(Ut̄) = {x̄ ∈ Xm : P ({y : ρ(t0, Lξ(x1), ..., Lξ(xk), y) = ξ(y)}) < 1− ε},

φt̄(Bt̄) = {x̄ ∈ Xm : ρ(t0, Lξ(x1), ..., Lξ(k), xi) = ξ(xi)fori = k + 1, ...,m}.

Again

Pm(Bt̄∩Ut̄) = Pm(φt̄(Bt̄)∩φt̄(Ut̄) =
∫
φt̄(Ut̄)

Iφt̄(Bt)dP
m =

∫
Vt̄

dP k
∫
Xm−k

Iφt̄(Bt)dP
m−k,

where Vt̄ ⊂ L(Xk) such that φt̄(Ut̄) = Vt̄ × Xm−k. We now describe φt̄(Bt̄)
using

Wt0,x1,...,xk = {y ∈ X : ρ(t0, Lξ(x1), ..., Lξ(xk), y) = ξ(y)}

Clearly

(x1, ..., xk)×Xm−k ∩ φt̄(Bt̄) = (x1, ..., xk)×Wm
t0,x1,...,xk

− k.

The inner integral equals Pm−k(Wm−k
t0,x1,...,xk

) which is less than (1 − ε)m−k,
since {x1, ..., xk} ∈ Vt̄}. The entire integral and therefore Et̄ are bounded in the
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same way. In the case of the compressions scheme with additional information
|T | = |Q|

(
m
k

)
. Thus

Pm(E) < |Q|
(
m

k

)
(1− ε)m−k

Note that for the basic compression scheme (Theorem 2.1) |T | =
(
m
k

)
. �

As in Theorem 2.2 we get bounds on the sample size that guarantee learn-
ability. Note that the first bound in the max expression is exactly the bound
proven in [BEHW87] which is the case where the kernel is empty.

Theorem 3.2:
Any compression scheme with kernel-size k and additional information Q

produces with probability at least 1− δ a hypothesis with error at most ε when
given a sample of size

m ≥ max(
2
ε

(ln(
1
δ

) + ln(|Q|)), 4k
ε

ln(
4k
ε

) + 2k).

This holds for arbitrary ε and δ. �
In the example of learning n orthogonal rectangles in E2 with kernel size 4n

the set Q has cardinality 4n! and the above bound is at most max( 2
ε (ln(1

δ ) +
4n ln(4n)), 4k

ε ln(4k
ε ) + 2k). Again our bound compares favorably to the bounds

of [BEHW86]: m ≥ max
(

4
ε log 2

δ ,
8d
ε log 8d

ε

)
, where d = 8n log(4n) for this ex-

ample (see [HW87] for how to estimate the dimension).

4 DEPENDENCE OF THE KERNEL SIZE ON
THE CONCEPT

To keep the notation simple we assumed that the kernel always has fixed size.
In many cases however the kernel size might depend on the sample size and on
the concept that is learned. It can be verified easily that our proofs hold for
that case as well.

We present an example of ([BEHW86]) in which the kernel size depends
on the concept and an improved learning algorithm for the example in which
the kernel size also depends on the sample size. Earlier it was mentioned that
the union of n orthogonal rectangles can be represented with a kernel of size
4n plus some finite information, thus demonstrating the learnability of such a
concept. If our concept class consists of arbitrary unions of rectangles, then no
bounded kernel size will suffice for all concepts in the class. But by allowing the
kernel size to depend on the concept (the number of rectangles in the union),
we can find a data compression scheme for this class. In this case, this is a
demonstration of learnability but not of polynomial learnability, since it is NP-
hard to find the smallest number of rectangles which interprets a sample [M78].
To get polynomial learnability, we can use a polynomial approximation ([J74],
[N69]) to the minimum cover. The approximation algorithm finds a consistent
hypothesis using a union of n logm rectangles in polynomial time. A kernel of
size 4n logm plus some finite information suffices to represent this hypothesis.
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The kernel size now depends on the sample size. The appropriate polynomial
bounds on the sample size follow from Theorem 3.1.

Theorem 4.1:
For a compression scheme with kernel size pmα (0 ≤ α < 1) and additional

information Q, where |Q| ≤ qmγ , the error is at most ε with probability less
than qmγ

(
m
pmα

)
(1− ε)m−pm

α

when given a sample of size m ≥ pmα. Here p, α,
q, and γ are fixed for the concept class C.

5 RELAXING THE CONSTISTENCY CON-
STRAINT

We will now relax Condition (C2) which asserts that ρ must be consistent with
the m-sample. In practice it might be hard to find polynomial algorithms ρ that
are consistent with all m samples. But there might be polynomial algorithms
that are consistent with a large portion of the samples. The question is how
many samples may be missed (we denote this number by l) and still assure
learnability.

(C2’) For any ξ ∈ C, anym, any x̄ ∈ Xm, and any point xi of x̄, ρ(κ(Lξ(x̄)), xi) =
ξ(xi) holds for all except for l of the m points xi.

Theorem 4.1:
For a compression scheme with kernal size k that misses at most l points the

error is at most ε with probability less than
(
k+l
k

)(
m
k+l

)
(1− ε)m−k−l when given

a sample of size m ≥ k + l.
Proof: In the proof of theorems 2.1 and 3.1 we did not use the fact that

ρ(κ(Lξ(x̄), y) = ξ(y) if y is in the kernal κ(Lξ(x̄)). We only needed that ρ is
consistent with ξ for all points outside of the kernal. See definition of Bt̄ in
both proofs. We will use this by encorporating the l inconsistent samples into
the kernal.

Let ρ, κ be a compression scheme with kernal size k that is inconsistent with
at most l elements. From this we construct a related compression scheme with
additional information ρ′, κ′, Q with kernal size k + l that is consistent with all
points of the sample except with some of the points of the kernal. κ′ simply
applies κ to x̄ and then scans the sample with ρ to determine which of the m
samples are not predicted correctly. The new kernal of κ′ will be the kernal of
κ plus some l samples on which ρ might not predict correctly. The additional
information Q is used to specify the original kernal of size k among the new
kernal of size k + l. Q consists of all bitmasks of length k + l in which exactly
k bits are one. ρ′ scans the kernal of size k + l removes the l points that were
not in the original kernal. ρ′ them applies ρ.

It is easy to see that the two compresssion schemes predict the same function
values. In particular their error is the same. We thus can apply the modified
proof of Theorem 2.1 to the ρ′, κ′, k + l scheme and the bound of the theorem
follows. Note that |Q| =

(
k+l
k

)
. �
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6 ERRORS IN THE SAMPLES

7 INTRODUCING COMPLEXITY

8 DISCUSSION AND OPEN PROBLEMS

Our proof of learnability for compression schemes with fixed kernel size is much
shorter than the proof in [BEHW86]. On the other hand there they are able
to show that their condition of fixed Vapnik-Chervonenkis dimension is also
necessary for learnability. For our scheme we show sufficiency, but necessity
remains an open question. Are there concept classes with finite dimension for
which there is no scheme with bounded kernel size and bounded additional
information?

Our compression can be compared with compression implicit in [BEHW87]
There one compresses the sample to a fixed number of bits which encode a
consistent hypothesis. In contrast in our scheme we compress to a fixed size
subsample, the points of which might be given with arbitrarily high precision.
One way to gain an understanding of the relation between these two approaches
is to compare the bounds produced for a case to which both apply. For example,
suppose the class of concepts to be learned is subintervals [0, c] of the interval
[0, 1). Suppose further that our domain contains only the finite subset of [0, 1)
which can be represented with binary fractions of b-bits, for some b. Then there
are 2b possible concepts. We can represent any hypothesis with b bits, and a
single b-bit number will give us enough information to reconstruct any sample.
This is sufficient, using the argument of [BEHW 86a] (or Theorem 3.1 for k = 0),
to guarantee that we can learn with sample size

m >
1
ε

(b+ ln(
1
δ

)).

With our data compression scheme, this concept class can be learned with a
kernel of size one. By Theorem 2.1 it suffices to take a sample of size

m ≥ 1
ε

(4 ln(
4
ε

) + ln(
1
δ

)) + 2.

Note that, unlike the first bound, this bound is independent of the precision
b with which we represent the points of the interval. Clearly the combinato-
rial complexity of this example is captured by the fact that one can compress
down to one point. The precision of the point is a side issue. Note that the
Vapnik-Chervonenkis dimension of the concept class of the example is one. Thus
classifying learnability with this dimension also avoids the issue of the precision.

The paradigm of the compression scheme is simple enough that it can be
extended in various ways. It is the aim of this paper to introduce the basic
scheme. In our further research we first relax Condition C2 which required that
ρ be consistent with the sample when given the kernel as an input. In practice,
it might be hard to find compression schemes that guarantee consistency with
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the whole sample. We explore bounds on how much of the sample can be missed
by ρ for the class to remain learnable.

Secondly we address the case where the sample is not reliable. We study the
relation between the amount of error and the speed and confidence with which
we can learn.

If errors are modeled probabilistically, this leads one toward considering the
case where the learnability or the speed of learning depends on the underly-
ing probability distribution. One step in doing this is to relax the requirement
that the bounds on the sample size be independent of the underlying probabil-
ity distribution. Certain concept classes, which do not necessarily have finite
Vapnik-Chervonenkis dimension, become learnable under this broader definition
of learnability. The data compression scheme can still be applied if one uses the
extended scheme which requires only partial consistency with the sample. Even
if we require that concepts remain learnable for arbitrary distributions, the
speed of learning may now be heavily dependent on the distribution. Since the
underlying distribution is unknown, our bounds would no longer give practical
apriori information on the sample size needed to learn with a desired degree of
confidence. Thus in this case one might wish to use empirical tests to estimate
the required sample size.

The function value of some observations might have been changed. We con-
sider the case where these changes are made probabilistically or by an adversary
and determine how much of the sample can be changed and still have learnabil-
ity.
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