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1 Introduction

”Learning and compression are known to be deeply related to each other. Learning procedures

perform compression, and compression is an evidence of and is useful in learning.” [5] One

important topic in studying the theory of learning is PAC Learnability where a learner tries to

learn an unknown labelling binary function out of a hypothesis class through having access to a

subsample of an unknown distribution of data. The learner is obligated to learn in polynomial

time, polynomial with respect to the inverse of the approximation error and inverse of the

confidence bounds. While it’s proven that every finite hypothesis class is PAC learnable [7],

this is a sufficient condition for PAC learnability and, [1] showed that there are hypothesis

classes with infinite size that are PAC learnable and expressed that the necessary and sufficient

condition for PAC learnability is the finiteness of the VC dimension of the hypothesis class not

its size.

In this project we try to demonstrate that the existence of a suitable data compression scheme

is sufficient to ensure PAC learnability [4].This approach provides an alternative to that of

(author?) [1]’s, which used the VC dimension to classify PAC learnable concepts. The bounds

are derived directly from what we will call the kernel size of the algorithms rather than from the

VC dimension of the hypothesis class and they provide weaker conditions for PAC learnability.

2 Settings

2.1 Formal model

In Probably Approximately Correct (PAC) learning, the data comes from a domain set X , there

is an unknown probability distribution over the domain set D : X → [0, 1], labels are binary

Y = {0, 1} and, the true labeling function is unknown f : X → Y. The learner has access to an

independently identically distributed (i.i.d) dataset Sm = ((x1, y1), · · · , (xm, ym)) where xi ∼ X
and yi = f(xi) and the learner’s output is h ∈ H, h: X → Y where H ⊆ YX is a concept class

that agent choose to learn function from in order to estimate the unknown f and the measure

of success is the expected true loss of the learned concept:

LD,f (h) := Px∼D[h(x) ̸= f(x)] := D({x : h(x) ̸= f(x)})

2.2 Empirical Risk Minimization

As mentioned earlier, in PAC learning a learner receives as input a training set Sm, sampled

from an unknown distribution D and labeled by some unknown target function f , and should

output a predictor hS : X → Y (the subscript S emphasizes the fact that the output predictor

depends on Sm). The goal of the algorithm is to find hS that minimizes the error with respect
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to the unknown D and f . Since the learner does not know what D and f are, the true error

is not directly available to the learner. A useful notion of error that can be calculated by the

learner is the training error – the error the classifier incurs over the training sample:

LS(h) :=
|i ∈ [m] : h(xi) ̸= yi|

m

Since the training sample is the snapshot of the world that is available to the learner, it makes

sense to search for a solution that works well on that data. This learning paradigm – coming

up with a predictor h that minimizes LS(h) – is called Empirical Risk Minimization or ERM

for short.

2.3 Objective

Let hS denote a result of applying ERMH to Sm, namely,

hS ∈ argmin
h∈H

LS(h)

Since LD,f (hS) depends on the training set, Sm, and that training set is picked by a random

process, there is randomness in the choice of the predictor hS and, consequently, in the risk

LD,f (hS). Formally, we say that it is a random variable. It is not realistic to expect that with

full certainty Sm will suffice to direct the learner toward a good classifier (from the point of

view of D), as there is always some probability that the sampled training data happens to be

very nonrepresentative of the underlying D. Therefore it is addressed by the probability to

sample a training set for which LD,f (hS) is not too large. Usually, the probability of getting a

nonrepresentative sample is denoted by δ, and is called (1− δ), the confidence parameter of the

prediction.

On top of that, since there is no guarantee for perfect label prediction, another parameter is

introduced for the quality of prediction, the accuracy parameter ϵ. The event LD,f (hS) > ϵ

is interpreted as a failure of the learner, while if LD,f (hS) ≤ ϵ the output of the algorithm is

viewed as an approximately correct predictor. Therefore, the upper bounding the probability

to sample m-tuple of instances that will lead to failure of the learner is of interest. Formally,

let Sm|x = (x1, · · · , xm) be the instances of the training set. The desired upper bound is:

Dm({S|x : LD,f (hS) > ϵ}) ≤ δ (1)

3 Compression Schemes

3.1 Motivation

This approach explores the PAC learnability using the paradigm of Data Compression. A first

algorithm chooses a small subset of the sample which is called the Kernel (Compressor 1). A

second algorithm predicts future values of the function from the kernel, i.e. the algorithm

1This term also was not used in the original paper but we found it more revealing and easier intuitively to

call this function this way.
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acts as an hypothesis for the function to be learned. The second algorithm must be able to

reconstruct the correct function values when given a point of the original sample thus, it’s called

Reconstructor (Decompressor 2.) The reason behind studying this framework as we will discuss

in Sections 4.2 and 4.3 is deriving better sample complexities for PAC learnable concept classes

than what [7] introduced for only finite concept classes and later [1] bettered it by introducing

sample complexities even for infinite concept classes but, was limited to those which have finite

VC dimension.

3.2 Formal model

Formally in this model, there is a function called Compressor κ such that κ :
⋃∞

m=k Sm → Sk

and simultaneously, there is another function called Decomporessor ρ such that ρ : Sk × X →
Y = {0, 1}. Now, the original objective defined in Equation 1 is turned to:

Dm({S|x : LD,f (ρ(κ(Sm), x)) > ϵ}) ≤ δ (2)

A data compression scheme of this form can be used as the basis of a learning algorithm.

Given a labeled sample, Sm, the algorithm makes the hypothesis that the concept is the set

{x : ρ(κ(Sm)), x) = 1}. Determining the compressor with k corresponds to computing the

hypothesis, i.e. the compressor encodes the hypothesis. The computation of the value of the

hypothesis is achieved with ρ using the compressor as an input. To fulfill the condition for

polynomial PAC learnability the algorithms κ and ρ must be polynomial in the length of their

input and the sample size m must be polynomial in 1
ϵ and 1

δ . What should be showed is that

whenever there is a compression scheme with fixed kernel size 3 then m is always polynomial in
1
ϵ and 1

δ .

3.3 Conditions

Here are the required conditions that should hold in a compression scheme:

1. ∀m ≥ k, Sk is a subsequence of length k of Sm

2. ∀m,xi ∈ Sm|x =⇒ ρ(κ(Sm), xi) = f(xi)

The second condition specifies that ρ reconstructs the labels of the sample points correctly.

Usually both mappings are given by algorithms. It is also assumed that the decompressor

ρ is Borel measurable. (This holds, for example, for functions on Rn built recursively from

ordinary comparison and arithmetic operations. We also assume that the concepts in H are

Borel measurable.)

2This term was not used in the original paper but we found it more revealing and easier intuitively to call

this function this way.
3The kernel size of a concept class is defined as the minimum kernel size of all compression schemes.
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4 Compression Schemes and PAC Learnability

4.1 Union bounds

Theorem 1. For any compression scheme with kernel size k the error is larger than ϵ with

probability (w.r.t. Dm) less than
(
m
k

)
(1− ϵ)m−k when given a sample of size m ≥ k.

Proof. Suppose we are learning some concept f . Given an ϵ and an m, we want to find a bound

on the probability of choosing an m-sample which leads to a hypothesis with error greater than

ϵ. In other words, we want to bound the error probability Dm(E) where

E = {Sm : D({x : ρ(κ(Sm), x) ̸= f(x)}) > ϵ}

Equivalently,

E = {Sm : D({x : ρ(κ(Sm), x) = f(x)}) < 1− ϵ}

Let T be the collection of all k-element subsequences of the sequence (1, 2, · · · ,m). For any

t̄ = (t1, · · · , tk) ∈ T , let

At̄ = {Sm : κ(Sm) = Sk}

Et̄ = {S ∈ At̄ : D({x : ρ(κ(S), x) = f(x)}) < 1− ϵ}

Ut̄ = {Sm : D({x : ρ(Sk, x) = f(x)}) < 1− ϵ}

Bt̄ = {Sm : mark ρ(Sk, xi) = f(x),∀xi s.t. i /∈ t̄)}

We have Et̄ = E ∩ At̄ and since Sm =
⋃

t̄∈T At̄, E =
⋃

t̄∈T Et̄. From the definition of At̄ we

get

Et̄ = {S ∈ At̄ : D({x : ρ(Sk, x) = f(x)}) < 1− ϵ}

Thus Et̄ = Ut̄∩At̄. The second condition of Compression Schemes conditions 3.3 guarantees

that At̄ ⊆ Bt̄. Roughly, these sets serve us as follows: We split Sm into the At̄ (which only

overlap where m-samples have repeated points). We then look at the intersection of E with each

of these At̄. Extending these intersections to the sets Ut̄ ∩Bt̄ eliminates explicit dependence of

the sets on κ and gives us sets whose probabilities can be easily bounded. We have

Dm(Et̄) ≤ Dm(Ut̄ ∩Bt̄)

It will now be convenient to rearrange the coordinates. Let πt̄ be any permutation of

1, 2, · · · ,m which sends i to ti, for i = 1, · · · , k. Let ϕt̄ : Sm → Sm send (s1, s2, · · · , sm) to

(sπt̄(1)
, sπt̄(2)

, · · · , sπt̄(m)) where si = (xi, yi). We have

Dm(Ut̄ ∩Bt̄) = Dm(ϕt̄(Ut̄) ∩ ϕt̄(Bt̄)) =

∫
ϕt̄(Ut̄)

Iϕt̄(Bt̄)
dDm
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Note that

ϕt̄(Ut̄) = {Sm : D({x : ρ(Sk, x) = f(x)}) < 1− ϵ}

Thus there exists some set Vt̄ ⊂ Sk such that ϕt̄(Ut̄) = Vt̄ × Sm−k. By Fubini’s theorem we

have

∫
ϕt̄(Ut̄)

Iϕt̄(Bt̄)
dDm =

∫
Vt̄

dDk

∫
Sm−k

Iϕt̄(Bt̄)
dDm−k (3)

We previously defined that

ϕt̄(Bt̄) = {Sm : ρ(Sk, xi) = f(xi) for i = k + 1, · · · ,m}

Let

Wx1,··· ,xk
= {x ∈ X : ρ(Sk, x) = f(x)}

Now

(s1, · · · , sm)× Sm−k ∩ ϕt̄(Bt̄) = (s1, · · · , sm)×Wm−k
x1,··· ,xk

Thus the inner integral in Equation 3 equals Dm−k(Wm−k
x1,··· ,xk

). Since (s1, · · · , sk) ∈ Vt̄, we

have D(Wx1,··· ,xk
) < 1− ϵ. Thus the inner integral is bounded by (1− ϵ)m−k. This then bounds

the entire integral, and we get

Dm(Et̄) ≤ (1− ϵ)m−k

Since the size of T is
(
m
k

)
, we have

Dm(E) ≤
(
m

k

)
(1− ϵ)m−k (4)

Which bounds our desired objective Equation 2 and the proof is completed.

4.2 Sample complexity

In the following theorem we give explicit bounds for the sample size that guarantee PAC learn-

ability. A similar bound m ≥ max(8dϵ ln(8dϵ ),
4
ϵ ln(

2
δ )) was given in [1], where d denotes the

Vapnik-Chervonenkis dimension of the class to be learned.

Theorem 2. Any compression scheme with kernel-size k ≥ 1 produces with probability at least

1− δ a hypothesis with error at most ϵ when given a sample of size

m ≥ max(
4k

ϵ
ln(

4k

ϵ
) + 2k,

2

ϵ
ln(

1

δ
))

This holds for arbitrary ϵ and δ.
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Proof. Follows from the bound of the Equation 4. Applying the previous theorem it suffices to

show that if m fulfills the bound then
(
m
k

)
(1− ϵ)m−k ≤ δ.

So

δ ≥
(
m

k

)
(1− ϵ)m−k =⇒ (1− ϵ)−(m−k) ≥

(
m

k

)
1

δ
=⇒

−(m− k)ln(1− ϵ) ≥ ln(
1

δ
) + ln(

(
m

k

)
) =⇒ m ≥

ln(1δ ) + ln(
(
m
k

)
)

−ln(1− ϵ)
+ k (5)

Also, We know that (
m

k

)
≤ mk

k!
≤ mk

And

1− ϵ ≤ e−ϵ =⇒ −ln(1− ϵ) ≥ ϵ

Thus Equation 5 always holds if

m ≥
ln(1δ ) + ln(mk)

ϵ
+ k =

1

ϵ
(ln(

1

δ
)) + k(

1

ϵ
ln(m) + 1) (6)

There are two summands in Equation 6. The inequality certainly holds if each summand

is at most m
2 . For the first summand this easily leads to the first bound in the maximum

expression of the theorem. Similarly the second summand will lead to the second bound of the

theorem. If

m

2
≥ k(

1

ϵ
ln(m) + 1)

Replacing m by the second bound in the above inequality leads to

2k

ϵ
ln(

4k

ϵ
) + k ≥ k

ϵ
(ln(

4k

ϵ
) + ln(ln(

4k

ϵ
) +

ϵ

2
)) + k

which simplifies to 4k
ϵ ≥ ln(4kϵ ) +

1
2 and can be easily verified.

4.3 Compression Scheme vs VC dimension

Now it’s a good time to compare the sample complexity obtained in Equation 2 to the m ≥
max(8dϵ ln(8dϵ ),

4
ϵ ln(

2
δ )) that was introduced previously by [1]. In the example of learning n-

dimensional orthogonal rectangles the VC dimension is 2n and The kernel size of the straight

forward compression scheme is also 2n. Thus the bounds stated in the previous theorem are

better roughly by a factor of two. More importantly, the VC dimension and the kernel size are

not always equal. In the case of arbitrary halfplanes the VC dimension is three but there exists

an algorithm with kernel size two [2]!
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4.4 Improving the Sample Complexity

The bound obtained in Equation 4 can also be bettered. [3] changed the perspective slightly by

imposing a restricter condition that is instead of having a fixed k let’s say that the compression

scheme could at most a kernel size of k then the following bound naturally arises

Dm(E) ≤
k∑

i=0

(
m

i

)
(1− ϵ)m−i

then the following lemma gives the new weaker bounds.

Lemma 1. For 0 ≤ ϵ, δ ≤ 1, if

m ≥ 1

(1− β)
(
1

ϵ
ln(

1

δ
) + k +

k

ϵ
ln(

1

βϵ
)) (7)

for any 0 < β < 1 then Dm(E) ≤
∑k

i=0

(
m
i

)
(1− ϵ)m−i ≤ δ

Proof. Let

m ≥ 1

(1− β)
(
1

ϵ
ln(

1

δ
) + k +

k

ϵ
ln(

1

βϵ
))

for 0 < β < 1 which is equivalent to

1

ϵ
ln(

1

δ
) + k +

k

ϵ
(1 + ln(

k

βϵ
)− 1 +

βϵ

k
m− ln(k)) ≤ m (8)

By using the fact from [6] that

−ln(α)− 1 + αm ≤ ln(m) ∀α > 0

For α = βϵ
k we get

ln(
k

βϵ
)− 1 +

βϵ

k
m ≥ ln(m)

By substituting ln(m) into the left hand side of Equation 8 we get

1

ϵ
ln(

1

δ
) + k +

k

ϵ
(1 + ln(m)− ln(k)) ≤ m =⇒ ln

1

δ
+ k(1 + lnm− ln k) ≤ ϵ(m− k)

=⇒ ( emk )k ≤ eϵ(m−k)δ

Also we know that if m, d are two positive integers such that d ≤ m− 2. Then,

d∑
k=0

(
m

k

)
≤ (

em

d
)d

So we have
k∑

i=0

(
m

i

)
(1− ϵ)m−i ≤ (

em

k
)ke−ϵ(m−k) ≤ δ (9)

The above lemma leads to sample size bounds that grow linearly in the size of the compres-

sion scheme k. The original of [4] obtained in Equation 6 had k ln k dependence.
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5 Uniform deviation bounds

Finally, in the following theorem we show that it is possible to derive uniform deviation bounds

based on the compression schemes.

Theorem 3. Consider a sample compression algorithm A of size k and a bounded loss function

ℓ ∈ [0, c] and a dataset S of size m 4 then:

ℓ(A(S);D) ≤ m

m− k
ℓ(A(S);S) + c

√
log 1

δ + k log em
k

2m

Proof. Let I ⊆ {1, · · · ,m}, with |I| ≤ k.

Let hI = ρ(SI) where SI = {(xi, yi)}i∈I .

Note: hI is independent of SĪ , where Ī = {1, · · · ,m} \ I.

By Hoeffding,

ℓ(hI ;D) ≤ ℓ(hI ;SĪ) + c

√
log 1

δ

2m
with probability ≥ 1− δ (10)

The number of candidate output hypotheses of A is

k∑
i=0

(
m

i

)
≤ (

em

k
)k

Using union bound, Equation 10 holds for all |I| ≤ k uniformly with probability ≥ 1 −
δ( emk )k = 1− δ′.

Therefore, with probability ≥ 1− δ′, ∀|I| ≤ k,

ℓ(hI ;D) ≤ ℓ(hI ;SĪ) + c

√
log 1

δ′ + k log em
k

2m

Note that (m− k)ℓ(h;SĪ) ≤ mℓ(h;S)

6 Conclusion

In this project, we first started from basics and introduced the framework of PAC learning.

To this end, we introduced the formal components of this setting in Section 2 and defined the

objectives that are of interest in it. Then, we introduced the framework of compression schemes,

necessary conditions for its applicability in PAC learning. After that, we first derived the union

bounds using compression schemes in Section 4.1 and based on that, obtained the new sample

4For simplicity we drop the the explicit dependency of the dataset to its size in its notation meaning that

here, S ≡ Sm.
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complexity 2 and secondly, in Section 4.3 we discussed whether the new bounds are really bet-

ter than the previous bounds. Also, we showed that 2 can also be improved further and get

even smaller bounds in Section 4.4 by Equation 7. And lastly, in Section 5 we derived uniform

deviation bounds on the compression schemes.

The main takeaways could be summarized as how this body of work contains a string of con-

nected topics and each piece of work added an improvement on top of a previous established

result. Then, understanding what compression schemes were all about and, how we could still

do much better instead of resorting to saying that having a finite VC dimension is a necessary

and sufficient condition of PAC learnability! Yet on this front, we faced some questionable

points like:

• How much valuable are the new bounds if they only are better up to a constant factor? 4.3

• What are the necessary conditions for existence of a compression scheme? 3.2 Or in other

words, How can someone design κ and ρ while meeting the required conditions instead of

viewing these functions as givens?

• How was the accuracy parameter (ϵ) used in Section 4.1 to derive unions bounds and in

the process it was used to bound a probability while it can be larger than 1?

And, it was very useful to see how union bounds can be derived using set rules in Section 4.1 and,

seeing that Hoeffding inequality also holds for compression schemes to derive uniform deviation

bounds.
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