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Abstract

We study monotone submodular maximization under general matroid constraints in the online
setting. We prove that online optimization of a large class of submodular functions, namely,
weighted threshold potential functions, reduces to online convex optimization (OCO). This is
precisely because functions in this class admit a concave relaxation; as a result, OCO policies,
coupled with an appropriate rounding scheme, can be used to achieve sublinear regret in the
combinatorial setting. We show that our reduction extends to many different versions of the online
learning problem, including the dynamic regret, bandit, and optimistic-learning settings.
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1 Introduction

In online submodular optimization (OSM) [I], submodular reward functions chosen by an adversary
are revealed over several rounds. In each round, a decision maker first commits to a set satisfying,
e.g., matroid constraints. Subsequently, the reward function is revealed and evaluated over this set.
The objective is to minimize a-regret, i.e., the difference of the cumulative reward accrued from the
one attained by a static set, selected by an a-approximation algorithm operating in hindsight. OSM
has received considerable interest recently, both in the full information [2, 3, [I [4] and bandit setting
[4, 3] 5], where only the reward values (rather than the entire functions) are revealed.

Online convex optimization (OCO) studies a similar online setting in which reward functions
are concave, and decisions are selected from a compact convex set. First proposed by Zinkevich [6],
who showed that projected gradient ascent attains sublinear regret, OCO generalizes previous online
problems like prediction with expert advice [7], and has become widely influential in the learning
community [8, @, [10]. Its success is evident from the multitude of OCO variants in literature: in
dynamic regret OCO [6l 11l 12, 13], the regret is evaluated w.r.t. an optimal comparator sequence
instead of an optimal static decision in hindsight. Optimistic OCO [14], [15, [16] takes advantage of benign
sequences, in which reward functions are predictable: the decision maker attains tighter regret bounds
when predictions are correct, falling back to the existing OCO regret guarantees when predictions are
unavailable or inaccurate. Bandit OCO algorithms [I7, I8, [19] study the aforementioned bandit setting,
where again only rewards (i.e., function evaluations) are observed.

We make the following contributions:

e We provide a methodology for reducing OSM to OCO, when submodular functions selected by
the adversary are bounded from above and below by concave relaxations and coupled with an
opportune rounding. We prove that algorithms and regret guarantees in the OCO setting transfer
to a-regret guarantees in the OSM setting, via a transformation that we introduce. Ratio « is
determined by how well concave relaxations approximate the original submodular functions.

e We show that the above condition is satisfied by a wide class of submodular functions, namely,
weighted threshold potential (WTP) functions. This class strictly generalizes weighted coverage
functions [20, 2], and includes many important applications, including influence maximization [22],
facility location [23| 24], cache networks [25] 26], similarity caching [27], demand forecasting [2§],
and team formation [29], to name a few.

e We show our reduction also extends to the dynamic regret and optimistic settings, reducing such
full-information OSM settings to the respective OCO variants. To the best of our knowledge, our
resulting algorithms are the first to come with guarantees for the dynamic regret and optimistic
settings in the context of OSM with general matroid constraints. Finally, we also provide a different
reduction for the bandit setting, again for all three (static, dynamic regret, and optimistic) variants;
this reduction applies to general submodular functions, but is restricted to partition matroids.

The remainder of the paper is organized as follows. We present related work and a technical preliminary
in Sec. 2 and Sec. [3] respectively, and our setting in Sec. [dl We state our main results in Sec. [5| and
discuss extensions in Sec. [6] Our experimental results are in Sec. [7} we conclude in Sec. [8

2 Related Work

Offline Submodular Maximization and Relaxations of Submodular Functions. Continuous
relaxations of submodular functions play a prominent role in submodular maximization. The so-called
continuous greedy algorithm [34] maximizes the multilinear relaxation of a submodular objective over
the convex hull of a matroid, using a variant of the Frank-Wolfe algorithm [35]. The fractional solution
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Table 1: Order (O(-)) comparison of regrets and time complexities attained by different online
submodular optimization algorithms for general submodular (GS) and others for continuous DR~
submodular (DR-S) functions. We also include Kakade et al. [33], who operate on Linearly Weighted
Decomposable (LWD) functions, and our work on Weighted Threshold Potential (WTP) functions. We
also indicate whether algorithms operate over uniform, partition, or general matroid constraints, in the
static, bandit, and optimistic settings. Regret and complexity are characterized in terms of the time
horizon T, the ground set size n, and the matroid rank r. Additional, algorithm-specific parameters
are specified in Appendix [C.VI] and the derivation of the regret constants in this work is provided in
Appendix [C] The SoTA general submodular+general matroid algorithm [2] has a tighter regret than
us by a factor y/r, but has a much higher computational complexity. We attain the same or better
regret than the DR-S [30] 31 32] and remaining algorithms, that also either operate on restricted
constraint sets [4], 3, [I] or on the much more restrictive LWD class [33]. Most importantly, our work
readily generalizes to the dynamic and optimistic settings. With the sole exception of Matsuoka et al.
[3], who study dynamic regret restricted to uniform matroids, our work is the first to provide guarantees
for online submodular optimization in the dynamic and optimistic settings under general matroid
constraints. Leveraging the concave relaxation and eschewing computing the multilinear relaxation also
yields significant computational complexity dividends.

is then rounded via pipage [36] or swap rounding [37], which we also use. The multilinear relaxation
is not convex but is continuous DR-submodular [38, 39], and continuous greedy comes with a 1 — %
approximation guarantee. However, the multilinear relaxation is generally not tractable and is usually
estimated via sampling. Ever since the seminal paper by Ageev and Sviridenko [36], several works have
exploited the existence of concave relaxations of weighted coverage functions (e.g., [20] 25]), a strict
subset of the threshold potential functions we consider here. For coverage functions, a version of our
“sandwich” property (Asm. [2)) follows directly by the Goemans & Williamson inequality [40], which we
also use. Both in the standard [36] and stochastic offline [20, 25] submodular maximization setting, in
which the objective is randomized, exploiting concave relaxations of coverage functions yields significant
computational dividends, as it eschews any sampling required for estimating the multilinear relaxation.
We depart from both by considering a much broader class than coverage functions and studying the

online/no-regret setting.

OSM via Regret Minimization. Several online algorithms have been proposed for maximizing
general submodular functions [4, 2, 3, [I] under different matroid constraints. There has also been recent
work [30, 31} 32] on the online maximization of continuous DR-submodular functions [38]. Proposed
algorithms are applicable to our setting, because the multi-linear relaxation is DR-submodular, and
guarantees can be extended to matroid constraint sets again through rounding [37], akin to the approach
we follow here. Also pertinent is the work by Kakade et al. [33]: their proposed online algorithm operates
over reward functions that can be decomposed as the weighted sum of finitely many (non-parametric)



reference functions—termed Linearly Weighted Decomposable (LWD); the adversary selects only the
weights. Applied to OSM, this is a more restrictive function class than the ones we study.

We compare these algorithms to our work in Table [} In the full information setting, the OSM
algorithm by Harvey et al. [2] has a slightly tighter a-regret than us, but also a much higher computational
complexity. We attain the same or better regret than DR-S [30}, 31l [32] and remaining algorithms that
either operate on restricted constraint sets [4, [3, [I] or on the much more restrictive LWD class [33].
Most importantly, our work generalizes to the dynamic and optimistic settings. With the exception of
Matsuoka et al. [3], who study dynamic regret restricted to uniform matroids, our work provides the
first guarantees for OSM in the dynamic and optimistic settings under general matroid constraints.

OSM in the Bandit Setting. Our reduction to OCO in the bandit setting extends the analysis
by Wan et al. [5], who provide a reduction to just FTRL in the static setting, under general submodular
functions and partition matroid constraints. We generalize this to any OCO algorithm and to the
dynamic and optimistic settings. Interestingly, Wan et al. [5] conjecture that no sublinear regret
algorithm exists for general submodular functions under general matroid constraints in the bandit
setting. We compare to bounds attained by Wan et al. [5] and other bandit algorithms for OSM
[4, [T, 3T), B3] in Table[4]in Appendix Our main contribution is again the extension to the dynamic
and optimistic settings.

3 Technical Preliminary

Submodularity and Matroids. Given a ground set V = [n] £ {1,2,...,n}, a set function f : 2 = R
is submodular if f(SU{i,5}) — f(SU{j}) < f(SU{i})— f(S) forall S CV and i,j € V' \ S and
monotone if f(A) < f(B) for all A C B C 2V. A matroid is a pair M = (V,I), where Z C 2V, for
which the following holds: (1) if B € Z and A C B, then A € Z, (2) if A,B € T and |A| < |B|, then
there exists an z € B\ A s.t. AU {z} € Z. The rank r € N of M is the cardinality of the largest
set in Z. With slight abuse of notation, we represent set functions f : 2V — R as functions over
{0,1}™: given a set function f and an x € {0,1}", we denote by f(x) as the value f(supp (x)), where
supp (x) £ {i € V : x; # 0} C V is the support of x. Similarly, we treat matroids as subsets of {0, 1}".

Online Learning. In the general protocol of online learning [41], a decision-maker makes sequential
decisions and incurs rewards as follows: at timeslot ¢ € [T], where T' € N is the time horizon,
the decision-maker first commits to a decision x; € X from some set X. Then, a reward function
fr + X = R>g is selected by an adversary from a set of functions F and revealed to the decision-maker,
who accrues a reward f;(x;). The decision x; is determined according to a (potentially random) mapping
Pry: XL x Fi7l 5 Y e,

xi = P ((x0)2h (F)12)). &)

Let Px = (Px )i be the online policy of the decision-maker. We define the regret of Py at horizon
T as:

T
regret;(Py) £ sup { max » fi(x)— E
(f)L_ eFT xXEX t_zl Px

T
Z ft(xt)] } (2)
t=1

We seek policies that attain a sublinear (i.e., o(T)) regret; intuitively, such policies perform on average
as well as the static optimum in hindsight. Note that the regret is defined w.r.t. the optimal fized
decision x, i.e., the time-invariant decision x € X that would be optimal in hindsight, after the sequence
(f)L is revealed. When selecting x;, the decision-maker has no information about the upcoming
reward f;. Finally, this is the full-information setting: at each timeslot, the decision maker observes
the entire reward function fi(-), rather than just the reward fi(x;) € R>o.



Deviating from these assumptions is of both practical and theoretical interest. In the dynamic
regret setting [6], the regret is measured w.r.t. a time-variant optimum, appropriately constrained so
that changes from one timeslot to the next do not vary significantly. In learning with optimism [14],
additional information is assumed to be available w.r.t. f;, in the form of so-called predictions. In the
bandit setting [42], the online policy Px of the decision maker only has access to rewards fi(x¢) € R>o,
as opposed to the entire reward function.

Online Convex Optimization. The online convex optimization (OCO) framework [6, [§] follows the
above online learning protocol (1)), where (a) the decision space X is a convex set in R”, and (b) the
set of reward functions F is a subset of concave functions over X. Formally, OCO operates under the
following assumption:

Assumption 1. Set X C R" is convex and compact. The reward functions in F are all L-Lipschitz
concave functions w.r.t. a norm ||-|| over X, for some common L € Rsg.

There is a rich literature on OCO policies [8]; examples include Online Gradient Ascent (OGA) [§],
Online Mirror Ascent (OMA) [43], and Follow-The-Regularized-Leader (FTRL) [10]. All three enjoy
sublinear regret:

Theorem 1. Under Asm. |1l OGA, OMA, and FTRL attain O(\T) regret.

Details on all three algorithms and the regret they attain are in Appendix [A] Most importantly, the
OCO framework generalizes to the dynamic, learning-with-optimism, as well as bandit settings (see

Sec. @

Weighted Threshold Potentials. A threshold potential [21] Wy g : {0,1}" — R>0, also known as a
budget-additive function [44], [45] [46], is defined as:

Upw.5(x) £ min {b, Zjes iL‘j’LUj} , for x € {0,1}", (3)

where b € R>q U {00} is a threshold, S C V is a subset of V = [n], and w = (w;)jes € [0,b]1°] is a
weight vector bounded by b.E| The linear combination of threshold potential functions defines the rich
class of weighted threshold potentials (WTP) [21], defined as:

f(X) £ ZEEC’ CZ\IIbZ,Wg7Sg (X), for x € {0’ 1}n, (4)

where C'is an arbitrary index set and ¢, € R>q, for £ € C. WTP functions are submodular and monotone
(see Appendix . We define the degree of a WTP function Ay = maxeec |Se| as the maximum number
of variables that a threshold potential ¥ in f depends on.

We give several examples of WTP functions in Appendix [B] In short, classic problems such as
influence maximization [22] and facility location |23, 24], resource allocation problems like cache
networks [25] [26] and similarity caching [27], as well as demand forecasting [28] and team formation [29]
can all be expressed using WTP functions. Overall, the WTP class is very broad: there exists a
hierarchy among submodular functions, including weighted coverage functions [20], weighted cardinality
truncations [47], and sums of concave functions composed with non-negative modular functions [21]; all
of them are strictly dominated by the WTP class (see Stobbe and Krause [21], as well as Appendix .

4 Problem Formulation

We consider a combinatorial version of the online learning protocol defined in Eq. . In particular, we
focus on the case where (a) the decision set is X C {0,1}", i.e., the vectorized representation of subsets

! Assumption w; < b, j € S, is w.l.o.g., as replacing w; with min {w;, b} preserves values of f over {0,1}".



Algorithm 1 Rounding-Augmented OCO (RAOCO) policy

Require: OCO policy Py, randomized rounding =: Y — X
1. fort=1,2,...,7T do
2y, e Py ()2 (RS
: x¢ < E(y,)

3
4: Receive reward fi(x¢)

5: Reward fun~ction ft is revealed

6: Construct f; from f; satisfying Asm.
7

: end for

of V = [n], and (b) the set F of reward functions comprises set functions over X'. Though some of our
results (e.g., Thm. [2)) pertain to this general combinatorial setting, we are particularly interested in the
case where (a) X is a matroid, and (b) F is the WTP class, i.e., the set of functions whose form is
given by Eq. .

Both in the general combinatorial setting and for WTP functions, evaluating the best fixed decision
may be computationally intractable even in hindsight, i.e., when all reward functions were revealed. As
is customary (see, e.g., [23]), instead of the regret in Eq. , we consider the so-called a-regret:

T T
a-regrety(Px) 2 sup {rfea;azfxx)— E [met)] } (5)
t=1 t=1

(fi)i_ €FT

Intuitively, we compare the performance of the policy Py w.r.t. the best polytime(n) a-approximation
of the static offline optimum in hindsight. For example, the approximation ratio would be « =1 —1/e
in the case of submodular set functions maximized over matroids.

5 Online Submodular Optimization via Online Convex Optimization

5.1 The Case of General Set Functions

First, we show how OCO can be leveraged to tackle online learning in the general combinatorial setting,
i.e., when X C {0,1}" and F comprises general functions defined over X.

Rounding Augmented OCO Policy. We begin by stating a “sandwich” property that functions in
F should satisfy, so that the reduction to OCO holds. To do so, we first need to introduce the notion of
randomized rounding. Let ) £ conv (X) be the convex hull of X. A randomized rounding is a random
map = : )Y — X, i.e., a map from a fractional y € ) and, possibly, a source of randomness to an integral
variable x € X. We assume that the set F satisfies the following:

Assumption 2. (Sandwich Property) There exists an o € (0,1], an L € Rsg, and a randomized
rounding = : Y — X such that, for every f : X — Rxo € F there exists a L-Lipschitz concave function
f: Y —R st

, foralxe X, and (6)
fly), forally €Y. (7)

We refer to f as the concave relazation of f. Intuitively, Asm. [2| postulates the existence of such
a concave relaxation f that is not “far” from f: Eqs. () and imply that f bounds f both from
above and below, up to the approximation factor a. Moreover, the upper bound (Eq. @) needs to only
hold for integral values, while the lower bound (Eq. ) needs to only hold in expectation, under an
appropriately-defined randomized rounding =.



Armed with this assumption, we can convert any OCO policy Py operating over Y = conv (X) to
a Randomized-rounding Augmented OCO (RAOCO) policy, denoted by P x, operating over X. This
transformation (see Alg. [1]) uses both the randomized-rounding Z, as well as the concave relaxations
(fs)!Z} of the functions (f,)'Z} observed so far. At t € [T], the RAOCO policy amounts to:

ve=Pye ()25 (F)2). (82)
x¢ =E(yy) € X. (8b)

In short, the OCO policy Py is first used to generate a new fractional state y, € ) by applying Py ; to
the history of concave relaxations. Then, this fractional decision y, is randomly mapped to an integral
decision x; € X according to the rounding scheme =. Then, the reward f(x;) is received and f; is
revealed, at which point a concave function f; is constructed from f; and added to the history. Our
first main result is the following:

Theorem 2. Under Asm.[3, given an OCO policy Py, the RAOCO policy Px described by Alg.
satisfies a-regrety (Px) < o - regrety (Py) .

The proof is in Appendix [D] As a result, any regret guarantee obtained by an OCO algorithm over
Y, immediately transfers to an a-regret for RAOCO, where « is determined by Asm.[d In particular,
the decision set Y is closed, bounded, and convex by construction. Combined with the fact that concave
relaxations f are L-Lipschitz (by Asm. , Thms. |1{ and [2| yield the following corollary:

Corollary 1. Under Asm.[4, RAOCO policy Px in Alg. [1] equipped with OGA, OMA, or FTRL as
OCO policy Py has sublinear a-regret. That is, a-regrety (Px) = O (\/T) .

To use this result, Asm. [2]should hold, and both the randomized rounding and the concave relaxations
used in RAOCO should be poly-time: all are true for WTP functions optimized over matroid constraints,
which we turn to next.

5.2 The Case of Weighted Threshold Potentials

We now consider the case where the decision set is a matroid, and reward functions belong to the class
of WTP functions, defined by Eq. . We will show that, under appropriate definitions of a randomized
rounding and concave relaxations, the class F satisfies Asm. [2] and, thus, online learning via RAOCO
comes with the regret guarantees of Corollary |1} For ) = conv (X'), consider the map f f of WTP
functions f : X — R to concave relaxations f : Y — R of the form:

F3) 2 £(9) = Yreeeomin {be, e, vjwes } (9)

for y € Y. In other words, the relazation of f is itself: it has the same functional form, allowing
integral variables to become fractionalﬂ This is clearly concave, as the minimum of affine functions is
concave, and the positively weighted sum of concave functions is concave. Finally, all such functions are
Lipschitz, with a parameter that depends on ¢y, by, wy, £ € C. Let F be the image of F under the map
@D. We make the following assumption, which is readily satisfied if, e.g., all constituent parameters (cy,
be, wy, £ € C') are uniformly bounded, or the set F is finite, etc.:

Assumption 3. There exists an L > 0 such that all functions in F are L-Lipschitz.

Next, we turn our attention to the randomized rounding =. We can in fact characterize the property
that Z must satisfy for Asm. |2[to hold for relaxations given by Eq. @D:

2In Appendix , we provide an example where the functional form of concave relaxations differs.



Definition 1. A randomized rounding Z: ) — X is negatively correlated if, for x = E(y) € X' (a) the
coordinates of x are negatively cor’relatedﬂ and (b) Ez [x] =y.

Our next result immediately implies that any negatively correlated rounding can be used in RAOCO:

Lemma 1. Let =: Y — X be a negatively correlated randomized rounding, and consider the concave
relaxzations f constructed from f € F via Eq. @D Then, if Asm. B holds for some L > 0, the set F

satisfies Asm. |2 with o = (1 — %)A where A = sup e Ay.

The proof is in Appendix [El As A — oo, the approximation ratio « approaches 1 — 1/e from above,
recovering the usual approximation guarantee. However, for finite A, we in fact obtain an improved
approximation ratio; an example (quadratic submodular functions) is described in Appendix . Finally,
and most importantly, a negatively-correlated randomized rounding can always be constructed if X is a
matroid. Chekuri et al. [37] provide two polynomial-time randomized rounding algorithms that satisfy
this property:

Lemma 2. (Chekuri et al. [37, Theorem 1.1.]) Given a matroid X C {0,1}", let y € conv (X) and =
be either swap rounding or randomized pipage rounding. Then, = is negatively correlated.

We review swap rounding in Appendix [F] Interestingly, the existence of a negatively correlated
rounding is inherently linked to matroids: a negatively-correlated rounding exists if and only if X is a
matroid (see Thm. I.1. in Chekuri et al. [37]). Lemma |l| thus implies that the reduction of RAOCO to
OCO policies is also linked to matroids. Putting everything together, Lemmas and Corollary
yield the following:

Theorem 3. Let X C{0,1}" be a matroid, and F be a subset of the WTP class for which Asm.[5 holds.
Then, the RAOCO policy Px defined by Alg. [1] using swap rounding or randomized pipage rounding
as Z and OGA, OMA, or FTRL as OCO policy Py, and concave relaxations in Eq. @D has sublinear

a-regret. In particular, a-regret (Px) = O (\/T)

Note that, though all algorithms yield O(v/T) regret, the dependence of constants on problem
parameters (such as n and the matroid rank r), as reported in Table 1], is optimized under OMA (see
Appendix |C)).

5.3 Computational Complexity

OCO Policy. OCO policies are polytime (see, e.g., |8]). Taking gradient-based OCO policies (e.g.,
OMA in Alg. 2in the Appendix), their computational complexity is dominated by a projection operation
to the convex set ) = conv (X). The exact time complexity of this projection depends on ), however,
given a membership oracle that decides y € conv (X), the projection can be computed efficiently in
polynomial time [8]. Moreover, the projection problem is a convex problem that can be computed
efficiently (e.g., iteratively to an arbitrary precision) and can also be computed in strongly polynomial
time [48, Theorem 3].

Concave Relaxations and Randomized Rounding. Concave relaxations are linear in the represen-
tation of the function f, but in practice come “for free”, once parameters in Eq. are provided. Swap
rounding over a general matroid is O (m“2), where r is the rank of the matroid [37]. This dominates the
remaining operations (including OCO), and thus determines the overall complexity of our algorithm.
This O (nr2) term assumes access to the decomposition of a fractional point y € ) to bases of the
matroid. Carathéodory’s theorem implies the existence of such decomposition of at most n + 1 points

3A set of random variables z; € {0,1},i € [n], are negatively correlated if E [HiES :cz] <Tlies Elz:] for all S C [n].

7



RAOCO-0GA RAOCO-0OMA FSF* TabularGreedy Random
&]?actg;i: F* | t ||Fx/F*| std. dev. | n ||Fx/F*| std. dev. | n | ~ ||[Fx/F*| std. dev. | n| ~ |Fx/F*| std. dev. | n |cp||Fx/F*| std. dev.
g 33 (] 0.902 [1.85 x 1072 0.965 [6.02 x 1073 0.839 [5.02 x 102 0.833 [8.12 x 1073 0.642 [3.03 x 1072
£ ]0.234] 66 || 0.924 [1.60 x 10~2|2.5|[ 0.967 [5.65 x 10-3| 10 | 0.05 || 0.896 |3.83 x 10~3|75| 0.0 | 0.894 [2.55 x 10~°|160| 1 || 0.624 [2.80 x 10~
Q E 99 [] 0.945 [7.70 x 10~3 0.982 [5.28 x 1073 0.933 [4.17 x 1073 0.931 [1.47 x 1073 0.622 [1.91 x 1072
N8 33 0.994 [2.52 x 1077 0.997 [6.95 x 10" 0.985 |5.65 x 1073 0.953 [4.88 x 107
E |0.83[66] 099 [875x10 7| 8 |[0.994 [3.48x 10 7| 10 | 0.1 X 0.987 [2.93 x 1073 10 | 1 |[ 0.950 [2.87 x 1073
g 99 [/ 0.993 [9.66 x 107 0.997 |3.37 x 107 0.995 [2.70 x 1073 0.953 [1.77 x 1073
2 50 || 0.845 [1.61 x 1072 0.853 [2.46 x 1072 0.703 [6.03 x 1072 0.694 [3.44 x 1072 0.632 [2.99 x 10~
w| <= ]0.171[100] 0.865 [1.13 x 10~2| 4 || 0.906 |1.25 x 10~2| 10 | 0.01 || 0.776 [1.28 x 10~2| 75| 0.0 || 0.768 |2.87 x 10-2]160| 1 || 0.615 [2.32 x 102
S 5 149]] 0.88 [7.97 x 1073 0.925 [9.09 x 1073 0.807 [1.52 x 1072 0.805 [2.48 x 1072 0.629 [2.36 x 1072
E& g 50 || 0.826 [1.35 x 1072 0.861 [1.82 x 1072 0.720 [2.28 x 1072 0.620 [6.08 x 1073
= E ]0.171[100][ 0.854 [6.73 x 10 7| 3 |[0.908 [9.42 x 10 ?| 10 |0.001 X 0.786 [1.27 x 1072]160| 1 |[ 0.619 [4.70 x 103
2 149]] 0.88 [2.40 x 1073 0.927 [6.34 x 1073 0.818 [1.3x 1072 0.625 [1.10 x 1072
g 98 || 0.749 [3.21 x 1072 0.792 [2.60 x 1072 0.681 [8.41 x 102 0.69 [1.11 x 1072 0.748 [5.26 x 1072
§ £ 10.407|196]] 0.786 [3.82 x 10~ 2[0.5|| 0.781 [1.36 x 10~2| 1.0 | 0.05 || 0.713 |7.44 x 10~2|1.0/0.001| 0.676 |1.03 x 10~ 2|160| 1| 0.7 |4.76 x 10~ 2
3 E 293 0.846 |3.98 x 102 0.866 |1.02 x 102 0.756 [6.42 x 10~2 0.769 |1.65 x 10~* 0.711 |3.11 x 1072
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Table 2: Average cumulative reward Fy (t = T/3,2T/3,T), normalized by fractional optimal F*,
of integral policies across different datasets and constraints. Optimal hyperparameters (7,7, ¢p) are
reported with each algorithm (see Appendix [H| for value ranges explored). RAOCO combined with
0GA or OMA outperforms competitors almost reaching one, with the exception of MovieLens, where
TabularGreedy does better. As Random also performs well on MovieLens, this indicates that the
(static) offline optimal is quite poor for this reward sequence. By Property , fractional solutions
strictly dominate the integral optimal, which implies that in all cases RAOCO outperformed the 1 —1/e
approximation, attaining an almost optimal value.

in X’; moreover, there exists a decomposition algorithm [49] for general matroids with running time
O (nﬁ). However, in all practical cases we consider (including uniform and partition matroids) the
complexity is significantly lower. More specifically, for partition matroids, swap rounding reduces to an
algorithm with linear time complexity, namely, O (mn) for m partitions [50].

6 Extensions

Dynamic Setting. In the dynamic setting, the decision maker compares its performance to the best
sequence of decisions (y})er) with a path length regularity condition [6, 5I]. Le., let Ax(T, Pr) £
{(xt);f:l exT: Z:;F:leHl — x| < PT} C X7T be the set of sequences of decision in a set X with
path length less than Pr € R>( over a time horizon 7. We extend the definition of the regret (Eq. (5)
to that of dynamic a-regret:

T

T
a-regrety p, (Px) 2 sup Cmax oY A0 -3 filx)
(fo)i erT L) €Ax(ToPr) 35 t=1

When a-regrety p (Px) is sublinear in T', the policy attains average rewards that asymptotically
compete with the optimal decisions of bounded path length, in hindsight.

Through our reduction to OCO, we can leverage OGA [6] or meta-learning algorithms over OGA [52]
to obtain dynamic regret guarantees in OSM. As an additional technical contribution, we provide the
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Figure 1: Average cumulative reward Fy of the different policies under SynthWC dataset under different
setups: stationary in (a) and non-stationary in (b). Non-stationarity in (b) is applied by changing the
objective at t = 25 (see Appendix . The area depicts the standard deviation over 5 runs.

first sufficient and necessary conditions for OMA to admit a dynamic regret guarantee (see Appendix |A)).
This allows to extend a specific instance of OMA operating on the simplex, the so-called fixed-share
algorithm [51] 53], to matroid polytopes. This yields a tighter regret guarantee than OGA [6, [52] (see
Theorem [7|in Appendix . Putting everything together, we get:

Theorem 4. Under Asm.[9, RAOCO policy Px described by Alg. [1] equipped with an OMA policy in
Appendz'z as OCO policy Py has sublinear dynamic a-regret, i.e., a-regrety p . (Px) = O (VPrT).

This follows from Thm. [J] and the dynamic regret guarantee for OMA in Appendix [A]

Optimistic Setting. In the optimistic setting, the decision maker has access to additional information
available in the form of predictions: a function w4 : [0,1]" — R, serving as a prediction of the
reward function f;+1(x) is made available before committing to a decision x;41 at timeslot ¢ € [T']. The
prediction 7; encodes prior information available to the decision maker at timeslot tE| Let g, and g
be supergradients of ft and 7; at point y,, respectively. We can define an optimistic OMA policy (see
Alg. |3|in Appendix that leverages both the prediction and the observed rewards. Applying again
our reduction of OSM to this setting we get:

Theorem 5. Under Asm.[d, RAOCO policy Px in Alg. [1] equipped with OOMA in Appendiz[A] as
policy Py yields a-regrety p (Px) = O <\/PT Z,‘trlegt — gf][&) )

This theorem follows from Theorem [2] and the optimistic regret guarantee established for OMA
policies in Theorem [7]in Appendix [A] The optimistic regret guarantee in Theorem [5] shows that the

regret of a policy can be reduced to 0 when the predictions are perfect, while providing O (\/T)

guarantee in Thm. [3{ when the predictions are arbitrarily bad (with bounded gradients). To the best of
our knowledge, ours is the first work to provide guarantees for optimistic OSM.

Bandit Setting. Recall that in the bandit setting the decision maker only has access to the reward
ft(x¢) after committing to a decision x; € X at ¢t € [T]; i.e., the reward function is not revealed. Our
reduction to OCO does not readily apply to the bandit setting; however, we show that the bandit
algorithm by Wan et al. [5] can be used to construct such a reduction. The main challenge is to estimate
gradients of inputs in ) only from bandit feedback; this can be done via a perturbation method (see
also Hazan and Levy [I7]). This approach, described in Appendix |G}, yields the following theorem:

Theorem 6. Under bounded submodular monotone rewards and partition matroid constraint sets, LI-
RAOCO policy Py in Alg. @ n Appendix@ equipped with an OCO policy Py, yields a-regrety p. yw (Px) <

4Function 7y can extend over fractional values, e.g., be the multi-linear relaxation of a set function.



W - regrety w p,, (Py,) + % + 2a0r?nT, where 6, W, are tuneable parameters of the algorithm and
regrety y p, (Py,) is the regret of an OCO policy executed for T/W timeslots.

Thm. [ applies to general submodular functions, but is restricted to partition matroids. The theorem
also extends to dynamic and optimistic settings: we provide the full description in Appendix [Gl Our
analysis generalizes Wan et al. [5] in that (a) we show that a reduction can be performed to any OCO
algorithm, rather than just FTRL, as well as (b) in extending it to the dynamic and optimistic settings
(see also Table |4 in the Appendix).

7 Experiments

Datasets and Problem Instances. We consider five different OSM problems: two influence
maximization problems, over the ZKC [54] and Epinions [55] graphs, respectively, a facility location
problem over the MovieLens dataset [56], a team formation, and a weighted coverage problem over
synthetic datasets. Reward functions are generated over a finite horizon and optimized online over both
uniform and partition matroid constraints. Details are provided in Appendix

Algorithms. We implement the policy in Alg. [1| (RAOCO), coupled with 0GA (RAOCO-0GA) and OMA
(RAOCO-0MA) as OCO policies. As competitors, we also implement the fized share forecaster (FSF*)
policy by Matsuoka et al. [3], which only applies to uniform matroids, and the TabularGreedy policy
by Streeter et al. [I], as well as a Random algorithm, which selects a decision u.a.r. from the bases of X
Details and hyperparameters explored are reported in Appendix . Our code is publicly available.[ﬂ

Metrics. For each setting, we compute F* = maxycy % Zle f(y), the value of the optimal fractional
solution in hindsight, assuming rewards are replaced by their concave relaxations. Note that this
involves solving a convex optimization problem, and overestimates the (intractable) offline optimal,
ie., F* > maxxcy % Zthl f(x). For each online policy, we compute both the integral and fractional
average cumulative reward at different timeslots t, given by Fy = %22:1 f(xs), Fy = %Zézl f(yy),
respectively. We repeat each experiment for 5 different random seeds, and use this to report standard
deviations.

OSM Policy Comparison. A comparison between the two versions of RAOCO (0GA and OMA) with
the three competitors is shown in Table [2l We observe that both 0GA and OMA significantly outperform
competitors, with the exception of MovieLens, where TabularGreedy does better. 0OMA is almost
always better than 0GA. Most importantly, we significantly outperform both TabularGreedy and FSF*
w.r.t. running time, being 2.15 — 250 times faster (see Appendix [H].

Dynamic Regret and Optimistic Learning. Fig.[I| shows the performance of the different policies
in a dynamic scenario. All the policies have similar performance in the stationary setting, however in
the non-stationary setting only 0GA, OMA, and FSF* show robustness. We further experiment with an
optimistic setting in Fig. ] under a non-stationary setting where we provide additional information
about future rewards to the optimistic policies, which can leverage this information and yield better

results (see Appendix [H].

8 Conclusion

We provide a reduction of online maximization of a large class of submodular functions to online convex
optimization and show that our reduction extends to many different versions of the online learning
problem. There are many possible extensions. As our framework does not directly apply to general

Shttps://github.com/neu-spiral/0SMvia0CO
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submodular functions, it would be interesting to derive a general method to construct the concave
relaxations which are the building block of our reduction in Sec. It is also meaningful to investigate
the applicability of our reduction to monotone submodular functions with bounded curvature [57], and
non-monotone submodular functions [23].
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Appendices

Algorithm 2 Online Mirror Ascent: OMA,, ¢ y(y;, ft)

Require: Learning rate 1 € R>¢, mirror map ® : D — R, decision set ), decision y,, reward function
ft : y — R7

Ly, < Vo(y,) > Map the primal point to a dual point
2 Zpy1 Y+ N8 > Take supergradient step in the dual space (g; € 8f,(y;))
3 zep1 — (VO) ' (2r41) > Map the dual point to a primal point
4 Y Hg}m)(zt“) > Project new point onto feasible region X
5: return y,;

Dual : Primal

V&(yt) '

(V<I>)71 (2¢41)

Figure 2: Online Mirror Ascent in Alg.

A Online Convex Optimization

In this section, we describe two powerful families of OCO policies: online mirror ascent (OMA, in
Appendix and follow the regularized leader (FTRL, in Appendix . Online gradient ascent
(OGA) can be described as a special case of OMA, under a Euclidean mirror map. Our exposition
below also simultaneously covers the guarantees that come with OMA in the dynamic and optimistic
settings; both follow from Theorem E] (see Appendix |G| for the derivation). Results for the static setting
(e.g., Theorem ID also follow from Theorem |7| by appropriately restricting the corresponding parameters
(see Appendix [A.III).

The setting, algorithms, and analysis we present here are a combination of the ones provided by
Rakhlin and Sridharan [I4], Zinkevich [6], and Zhao et al. [58]. In particular, Rakhlin and Sridharan
[14] present OMA in the optimistic setting, while Zinkevich [6] and Zhao et al. [58] studied OGA and
OMA, respectively, in the dynamic setting. In the “master theorem” (Theorem (7)) that we present
below, we combine the proof techniques by all three, to give an algorithm that comes with simultaneous
guarantees in all settings (static or dynamic, optimistic or non-optimistic, and combinations thereof).

A.I Online Mirror Ascent

Online Mirror Ascent [43], Sec. 5.3] is the online version of the mirror ascent (MA) algorithm [59] for
convex optimization of a fixed, known function; OMA is a class of policies that generalize OGA. The
main premise behind mirror ascent is that variables and supergradients live in two distinct spaces: the
primal space, for variables, and the dual space, for supergradients. The two are linked via a function
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Algorithm 3 Optimistic Online Mirror Ascent: OOMA,, 5y (y;, ftrTee1)

Require: Learning rate n € R>o, mirror map ® : D — R, decision set ), decision y,, reward function
fi : YV — R, prediction function 71
L yi .y < OMA, ¢ y(y; ft) > Adapt secondary decision according to the reward f; and previous
primary decision y,
2: yy11 < OMA, 6 y(yT, mi41) > Adapt primary decision according to the precision 741 of the future
reward ft+1 and previous secondary decision y7
3: return y, 4

known as a mirror map. Contrary to standard supergradient ascent, updates using the gradient occur
on the dual space; the mirror map is used to invert this update to a change on the primal variables.
For several constrained optimization problems of interest, mirror ascent leads to faster convergence
compared to gradient ascent [43] Sec. 4.3].

The primal and dual spaces are R™. To disambiguate between the two, we denote primal points by
v,z € R™ and dual points by y,z € R™, respectively. Formally, OMD is parameterized by (1) a learning
rate n € Ry, and (2) a differentiable map ® : D — R where D is its domain.

Assumption 4. The map ® : D — R satisfies the following properties:

1. The domain D of ® is a convex and open set such that the decision set Y is included in its closure,
i.e., Y C closure(D), and their intersection is nonempty Y N'D # ().

2. The map @ is p strongly-convex over D w.r.t. a norm ||-|| and differentiable over D.
3. The map VO(x) : D — R" is surjective.

4. The gradient of ® diverges on the boundary of D, i.e., limx_op||VP(x)|| = +o0, where 9D =
closure(D) \ D.

When the map ® satisfies the above properties is said to be a mirror map.

OMA takes the form described in Alg. [2, Given n and ®, an OMA iteration proceeds as follows:
after receiving the reward fi(y,) and the reward function fi(-) is revealed, the current state y, is first
mapped from the primal to the dual space via:

Ve =Ve(y,). (10)

Then, a regular supergradient ascent step is performed in the dual space to obtain an updated dual
point:

Ziy1 = Y + N84, (11)

where g, € 0 f‘t(yt) is the supergradient of f; at point y;. This updated dual point is then mapped back
to the primal space using the inverse of mapping V&, i.e.:

zp41 = (V) (Z141)- (12)

The resulting primal point z; 1 may lie outside the decision set ). To obtain the final feasible point
Y11 € Y, a projection is made using the Bregman divergence associated with the mirror map ®. The
final result becomes:

Yirr = O3rp(zes1), (13)
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where IS, ( - ) is the Bregman projection associated to ® onto the set Y ND. The steps described
Egs. f define OMA. The illustration in Fig. [2| summarizes these steps. Note that y,,; is a
function of {(y,, ft)} € {(ys, fs)}i;, hence OMA is indeed an OCO policy.

s=1>
We conclude our description of OMA by providing a formal definition of supergradients and the
Bregman projection.

Definition 2. The superdifferential of a concave function f:R" = R at point y € R" is defined as the
set Of(y) C R™ of supergradients s.t. every g(y) € 0f(y) satisfies the following inequality

f3) - ) =gly) (y—y), foreveryy €R™. (14)

When the function f is differentiable, then by definition df (y) = {V f(y)}, where V f(y) is the gradient
of f at point'y € R”.

Definition 3. The Bregman projection [6()] associated to a map ® onto a convez set S is denoted by
Hg? :R™ — S, is defined as

Ig(y') = argergin Ds(y,y'),  where  Da(y,y')=®(y) - @(y') - Ve(y')-(y —y'). (15

OMA considers that the decision set is bounded w.r.t. the Bregman divergence associated to ®.
Formally, we assume the following.

Assumption 5. Consider a decision set Y and a mirror map ® and y, € Y. The Bregman divergence
Dg associated to ® is bounded over Y, i.e., there exits D < oo s.t.

Da(y,y1) < D, for anyy € Y. (16)

Assumption 6. Consider a decision set ) and a mirror map ®. The dual norm || - ||« of the gradient
of the mirror map ® is bounded by Ly € R>q, i.e.,

IVe(y)|l+« < Lo, for everyy € Y. (17)

Note that Asm. |§| is typically not required to establish static regret guarantees (see, e.g., Hazan
[8]). However, as we remark in Appendix , policies with sublinear static regret do not necessarily
perform well in dynamic settings, e.g., this the case for OMA configured with the standard negative
entropy mirror map [43]. In Theorem we show that Asm. |§| is sufficient to establish sublinear dynamic
regret against a comparator sequence (see Sec. @ with path length Pr > 0.

Regret Guarantee. Here, we provide a general regret bound for Optimistic OMA in Alg. [3] configured
with a general mirror map ®; note that the same algorithm applies to both the optimistic and dynamic
settings, and so does the formal guarantee that we provide below. The non-optimistic regret bounds
follow from the optimistic regret bounds by setting the predictions to 0 (m; = 0), and Alg. [3| reduces to
Alg. |2l Static (i.e., non-dynamic) bounds follow by setting Pr = 0.

Theorem 7. Consider an OCO setting with a convexr decision space ), concave rewards f e F
satisfying Asm. |1| from a set F selected by an adversary, and predictions 7 : Y — R for t € [T].
The regret of OOMA in Alg. [3 configured with ® satisfying Asms. [JHf] against a sequence of decision
(YD)ierr) € Av(T, Pr) is upper bounded as follows

T
regrety p, (Py) <0y g, — &7 l2/2p + (D> + 2La Pr) /1. (18)
t=1
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When the learning rate n, = \/Qp (D? + 2LoPr) /> 1eimlg: — g7||2 is selected, the following holds

T
regrety p, (Py) < \|2/p(D?+2LePr) Y |g, — &7 |12 (19)
t=1

Proof. We adapt the proof of Rakhlin and Sridharan [61, Lemma 1| to support dynamic regret.

Z (8) (v7 — ¥ (20)
te(T|
* T p ™ 2
< S llg— & lelye = ¥71 + 1 (Dalyivi o)~ Dalyivd) — SvE-wl?) )
te[T)

In order to upper bound the r.h.s. term in the above inequality. We first bound the term Zte[T] g —
87 [«lly: — y7 I, and then, secondly, we bound the term >,y (Da(y?,y7 1) — Da(y7,¥7)).

First, note that it holds that ab = mfn 5 02 + 3 1 b2 so we have
77/ 2 2
. = el = y70 = ing { % e — eI+ 5l ~ 717 (22)
n n
n p
< ;pllgt — g7l + %Ily%r —v? (for some n/p).  (23)

Second, we employ the Cauchy-Schwarz inequality and the bounds on D¢ and V& from the
assumptions, so we have the following:

> (Dalyi.¥i1) — Dalyi,¥i)) (24)
te(T)
* e * e * I
< Do(y1,y5)+ > (Da(yii1:¥7) — Dalyr,y7)) (25)
—_———
< D2 te[T]
< D? + Z (V@(yz(—&-l) - V@(yf)) (Yt+1 ) D<I>(Yt>yt+1) (26)
te[T] Cauchy—Scl:\fvarz s Ineq. >0
<D+ ) |IVO(yia) — VD)l llyi: — yil (27)
te(T) <Lg
<D*+2Ls Y |lyits — il (28)
te(T)
Combine Egs. —@ ) to obtain the final upper bound.
Z ft(Yt ft Yt) Z 8t Yi — (29)
te[T) te[T)
1 1
< 5(D2+2L<1> > lvin = ill) + 50 > e &2 (30)
te([T] te([T)
Pr
1 n w
= (D*+2LoPr) + - 3 g — 72 (31)
K 2p te[T]

The learning rate 7, = \/Qp (D? + 2LoPr) /3 ieimllge — g7 ||? yields the tightest upper bound given
by the theorem. O
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Algorithm 4 Follow the Regularized Leader: FTRL, ry((y,)i 1, (fs)f_1)

Require: Learning rate n € R>g, regularization function R : X — R, decision set ), decisions y,,
reward functions fs: Y= Rforselt
L g « Oy fs(ys)
2: Yyqq ¢ argmingey n S gy +R(y) > Project new point onto feasible region X
3: return y,

Note that, to obtain the tightest upper bound on the regret, we assume that when setting the

learning rate we have access to quantities p, D, Lg, Pr, as well as quantity I £ \/Zte[T} llg: — g7 2.

The first three are problem-specific bounds and are usually easy to determine given the problem instance
(see also Appendix . Parameter Pr is a usual problem input, as it bounds the power of the (dynamic)
adversary; assuming that it is known is standard (see, e.g., Zinkevich [0], Besbes et al. [11]). Guarantees
however can be still provided even if it is not a priori known using the same meta-learning approach as
the one discussed next (see, e.g., Zhao et al. [52]).

Quantity I can readily be bounded by Lv/T in the non-optimistic setting, by Assumption
However, to obtain a tighter bound, but also when operating in the optimistic setting, this parameter
can be learned through a meta-algorithm (see also Hazan [8], Shalev-Shwartz [9], McMahan [10]). In
short, one can execute in parallel multiple instances of OMA algorithms configured for different i1
with an appropriately chosen range and resolution, and frame an expert problem to learn the best
expert (policy). The meta problem is a standard prediction with expert advice problem, and can be
tackled with well understood parameter-free and computationally efficient learning algorithms [8, [, [10].
Alternatively, one could consider adaptive online algorithms [9] that adapt to the observed gradients
with a slight degradation in performance.

Note that in our implementation and experiments, we perform a grid search for ) values (see Sec. [7)).
We also implemented the meta-learning algorithm for the optimistic setting (see Sec. , also with a
grid search for 7.

A.I1 Follow the Regularized Leader

It is well known that follow the leader (FTL) policy, also known as fictitious play in economics, fails to
provide sublinear regret guarantee [8]. The FTL policy selects naively the decision that would minimize
the past costs, i.e., X441 € argminy ¢y Zi:l fs(y). This policy fails against an adversary; an adversary
can drive the policy to change severely its decision from one timeslot to another. The policy can be
modified to exhibit more stability |[10] through regularization, by the introduction of regularization
function R : X — R. The update rule is then modified to the following:

t
Xt+1 = argminye)f n Z gs'Y + R(y) (32)
s=1
We assume that the regularization function satisfies the following properties:

Assumption 7. The map R : X — R is 1-strongly conver w.r.t. a norm |- ||, smooth, and twice
differentiable.

The pseudocode of the algorithm is provided in Alg. [4
Regret Guarantee. The regret of the FTRL policy is given by:

Theorem 8. ([8, Theorem 5.2.]) Consider an OCO setting with a convex decision space ), concave
rewards f € F satisfying Asm. from a set F selected by an adversary. The regret of FTRL in Alg. @
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against a fived decision 'y, € Y is upper bounded as follows

T T

. = R(y*)— R
SR - Y Fy) <20 Y 2 + TV B, (33)
t=1 t=1 te[T) n

When the learning rate rate 1, = M is selected, the following holds:
Zte[T]Hgt”*

T T
D Ry =D fily) <2 [2(R(y*) = Riy1) D llell? (34)
t=1 t=1 te([T]

A.IIT1 Derivation of Theorem [1l

Assumption [T implies that the supergradients of the reward functions are bounded. Note that when the
reward functions are Lipschitz continuous their supergradients are bounded at any point [9]. Moreover,
the diameter of the constraint set is bounded by a constant. Thus, Theorem [7] implies that in the case
of OMA in Alg. [2| configured with an appropriately selected mirror map satisfying Asms. (e.g. OGA
by selecting ®(x) = 3||x||3) the regret bound is given by

T
2T
regrety(Py) < Dy |2/pY g2 < DL~ =0 (vT). (35)
t=1

Furthermore, the regret of FTRL for an appropriately selected regularizer satisfying Asm [7| (e.g.,
Euclidean regularizer R(x) = 1[|x||3) in Alg. [4]is given by

regrety (Py) < 2 \/2 (R(y*) = R(y1)) Y &2 < 2Lv2(R(y") — Ry )T =0 (V). (36)
]

te(T

B Weighted Threshold Potential Functions

B.I Submodularity and Monotonicity

Consider a threshold potential Wy, g(A) defined in Eq. for A CV = [n]. We omit the parameters
b,w,S when they are clear from the context. We split our proof into two parts, by first proving
submodularity and then monotonicity.

Submodularity. Given a finite set V', the function is said to be submodular if and only if for every
ACV andi,j € V\ A it holds

FAULE G} = FAUL{G}) < FAUL}) = f(A). (37)

We have the following

N L for 31 cgna Wk > b,
VAU —(A) = {min {b — > heSnA wk,wi} otherwise. (38)
It also holds
for —w;
AU (i) - WAL = {0. e o
min b — > ;g4 Wk — wj, wi;  otherwise.
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Combine Egs. and to obtain
Y(AU{i,j}) —w(AU{j}) < P(AU{i}) — U(A). (40)

Thus, we proved that the set function g is submodular. The function of interest in Eq. can be
expressed for every S C Vas

f(A) = Z ceWh, w5, (A). (41)

leC

The function f is a weighted sum with positive weights of submodular function; therefore, from the
definition f is also submodular.

Monotonicity. Consider the sets A C B C V. We have the following

\I/(B):min{b, Z wk}:min b, Z wk + Z Wk - (42)

keSNB keSNA keSN(B\A)

Note that ZkeSm(B\A) wy, > 0. Thus, it holds

¥(B) > min {b, > wk} = U(A). (43)

kesSnA
We conclude the proof by noting that f is a weighted sum with positive weights of monotone functions
as expressed in Eq. .
B.I1 Applications

B.II.1 Weighted Coverage Functions

For V' = [n], let {S¢}rec be a collection of subsets of V', and ¢, € R>g be a weight associated to
each subset Sp. A weighted set coverage function f : {0,1}"™ — R>( receives as input an x € {0,1}"
representing a subset of V and accrues reward ¢y if Sy is “covered” by an element in x: formally,

feo)=> e |{1-[0-=)]. (44)
LeC JESy

Observation 1. The weighted coverage function f belongs to the class of WTP functions described by
Eq. ; i particular:

f(x)= 204\11171& (x) for every x € {0,1}". (45)
leC

This follows from the simple fact that
1-JJ@ = ;) = min {121;} , forallx e {0,1}",SCV. (46)
i€S €S

Classic problems such as influence maximization [22] and facility location [23, 24] can all be expressed
via the maximization of weighted coverage functions subject to matroid constraints (see also [20]).
Another such example is cache networks [25], which have also been studied in the online setting [26].
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Our online setting naturally captures different epidemics over the same graph in influence maximization
and dynamic tasks in facility location [20], as well as time-variant content item requests in cache
networks [26]. We describe each of these settings in more detail below.

Influence Maximization |22, 20]. In the classic paper by Kempe et al. [22], a network is represented
as a graph G(V, E') and a probabilistic model like Independent Cascades [62] or Linear Threshold [63] is
used to emulate the propagation of an epidemic over GG, starting from a seed set S C V. The objective
function is then the total number of nodes in V' reached by the epidemic. This is hard to compute so,
in practice, the objective is generated by sampling different reachability graphs from the underlying
probabilistic epidemic model, and estimating the objective in expectation. This estimation is indeed a
WC function: in particular, C' =V, and there is one set .S; for every node ¢, comprising the nodes that
would infect ¢ if they are placed in the seed set, and ¢; = 1.

The influence maximization setting maps very well to the online submodular maximization problem
we consider, particularly in the bandit setting. Different reachability graphs/coverage functions
correspond to different instances the epidemic propagation model at each timeslot or, more broadly,
different epidemics, potentially with time-varying statistics. The decision maker gets to pick the seeds
subject to, e.g., a cardinality /uniform matroid constraint, and observes either the entire reachability
graph (in the full information setting), or just the final number of nodes infected (in the bandit setting).

Facility Location [23], 24, 20]. In the classic facility location problem, we are given a complete
weighted bipartite graph G(VUV’, E), where V = [n]|, E = V x V', with non-negative weights w, ,» > 0,
v € Vv € V'. The decision maker selects a subset S C V and each v’ € V responds by selecting the
v € S with the highest weight w, .. The goal is to maximize the average weight of these selected edges,
i.e. to maximize

1
f(8) = v > MAX Wy, (47)
v'eV

given some matroid constraints on S. Set V can be considered a set of facilities and V"’ a set of customers
or tasks to be served, while w, s is the utility accrued if facility v serves tasks v’. Karimi et al. [20]
note that this is also an instance of the Exemplar-based Clustering problem, in which V' = V" is a set of
objects and wy , is the similarity (or inverted distance) between objects v and v, and one tries to find
a “summary” subset S of exemplars/centroids highly similar to all elements in V. Karimi et al. also
show that this objective is a weighted coverage function, of the form , because, for x € {0, 1}" the
characteristic vector of S, we have

n—1 % n
MAX Wy, = Z (w,,jﬂ,/ — wm.ﬂ’v/) 1— H(l —Tr;) | W | 1— H(l — T,
i=1 j=1 j=1

where 7 : V — V' is a permutation such that: wr, v > Wry o > .0 2> We, 4.

This also maps well to our online setting. In the context of facility location, we wish to choose
facilities per timeslot in the presence of time-varying, online arrivals of customers/tasks, and in
the context of exemplar clustering we wish to choose summaries/exemplars that are good across a
potentially time-varying sequence of sets of points. Both fit very well in the full-information setting,
as all distances/similarities are immediately observable/computable whenever the tasks/points are
revealed.

Cache Networks [25], 26]. Ioannidis and Yeh [25] consider a network of caches, each capable of
storing at most a constant number of content items of equal size. Item requests are routed over paths in
the graph, and are satisfied upon hitting the first cache that contains the requested item. The objective
is to determine a mapping of items to caches that minimizes the aggregate retrieval cost.
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Formally, the network is represented as a directed graph G(V, E), with V' = [n], Let C be the set
of content items available. Each node v € V has capacity ¢, € N: exactly ¢, content items in C can
be stored in v. Let x,; € {0,1} the variable indicating whether v € V stores item i € C, and let
X = [Zyilveviec € {0, 1}|V|X|c‘. Note that the capacity constraints imply that ) ;. -z < ¢y, for all
v € V. This set of constraints defines a partition matroid [25]. Each item ¢ in the catalog C is associated
with a fixed set of designated servers S; C V', that always store ¢; w.l.o.g., it is assumed that memory
used is outside the cache capacity (as it is fixed and outside the optimization problem). A request
request r is a pair (i,p) where i € C is the item requested, and p is the path traversed to serve this
request. The terminal node in the path is always a designated source node for i, i.e., if [p| = K, px € S;.
An incoming request (i, p) is routed over the network G following path p, until it reaches a cache that
stores 7. The objective is to find an allocation x that maximizes the caching gain, i.e., the reduction in
routing costs compared to serving the request from the final designated server. Given request r = (i, p),
this is captured by the objective:

[p|—1 k
60— S (1— 1 <1—mpk,i>) | )
k=1

k=1
where w,,, > 0 is the cost of transfering an item over edge (u,v). This objective is clearly of the form
in Eq. .

This problem also maps very well to the online submodular maximization setting: different functions,
varying through time, naturally correspond to different requests r = (i,p) for different contents,
traversing different paths across the network. Again, the full information (rather than bandit) setting is
natural here, as the entire function is revealed once the item and the path are revealed; both are needed
at execution time, to identify what is requested and how the request should be routed. The online
submodular maximization setting was recently studied by Li et al. [26], who used a distributed variant

of the algorithm by Streeter et al. [64] to obtain a-regret guarantees (see Table [1| for a comparison of
[64] with RAOCO).

B.I1.2 Similarity Caching

Similarity caching [27] is an extension of the so-called paging problem [65] [66]. The objective is to
efficiently use local storage memory and provide approximate (similar) answers to a query in order to
reduce retrieval costs from some distant server. Formally, consider a catalog of files represented by the
set V' = [n], and an augmented catalog represented by the set V= [2n]. Item i € V is the local copy of
a remote file i +n € V. Let c(q,7) € R be the cost of responding to query ¢ € V' with a similar file
i € V: this can be determined, e.g., by the similarity or distance between the files, in some appropriately
defined feature space. Si Salem et al. [27] show that the reward received under this setting is given by

Cy
F) =Y (elg, mgup1) — elg, mg0)) min S k =[Sy, D> an, ;o (49)
I=1 JElNS;

for some C; € N, subset S; C V' where |S)| < k, and permutation 7, : V — V satisfying c(q, mg141) —
c(q,mgy) > 0 for I € [Cy]. This is indeed a WTP function:

Observation 2. The similam’tyccachmg objective belongs to the class of WTP functions defined by
Eq. {). In particular, f(x) =322 (c(g, Tgu41) — (@, Tq,)) Ppysy).1,5, (%)

Note that the above functions cannot be described as weighted coverage functions (Eq. ), and
serve as an example of how WTP generalizes the WCF class (see also the discussion in Section
below). Moreover, this problem also fits the full information OSM scenario very well: queries g arrive
online and, once revealed, the full reward function is determined as well.
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B.I1.3 Quadratic Set Functions

Motivated by applications such as price optimization on the basis of demand forecasting [28], schedul-
ing [67], detection in multiple-input multiple-output channels in communication systems [68] and team
formation [69} [70], we consider quadratic monotone submodular functions f : {0,1}" — R>¢ of the form

f(x)=hTx+ %XTHX, (50)

where, w.l.o.g., H is symmetric and has zeros in the diagonal. Note that f is monotone and submodular
if and only if : (a) H < 0,,xn, and (b) h + Hx > 0,,»1. Thinking of this as the performance of a team,
the linear/modular part of the function captures the strength of each team member, and the quadratic
part captures the complementarity /overlaps between their skills.

Observation 3. The quadratic function f belongs to the class of WTP functions (4), i.e., f(x) =
Voo htH1, ) (T) + s > i (5 Hi )11 qi gy (%), for every x € {0, 1}".

To see this, observe that the following equality holds for all =,y € {0,1}
1-(1-2)(1-y)=z+y—2y=min{l,z+y} (51)
We have that

n n n n
51 .
xTHx = Z inxjHi,j Z Z(SEZ +2; —min{l, z; + 2;})H;

i=1 j=1 i=1 j=1

n—1 n
= 2x"TH1 + 22 Z (—H; ;) min{l, z; + z;}
i=1 j=i+1

The last equality holds because H is symmetric and hollow. Substituting the above expression for
xTHx into f(x) = hTx + $xTHx yields the observation.

This also matches the OSM setting well. For example, different team performance functions can
correspond to the score/quality attained by the team at a sequence of progressively revealed tasks. In
the bandit setting, only the final performance score is revealed, while in the full information setting,
this is decomposed into the individual contributions and their pairwise interactions.

Finally, note that, by definition, the degree A of quadratic set functions is at most 2. As a result,
the a-regret we attain in this setting has a = %, by Lemma
B.III Generality of the WTP Class

SCMM C WTP. Stobbe and Krause [2I] defined the class of sums of concave functions composed of
non-negative modular functions plus an arbitrary modular function (SCMM) taking the form

fR) =c-x+Y_ ¢j(w;-x) (52)

jeJ

where ¢, w; € R” and 0 < w; < 1 (element-wise) and ¢; : [0,w; - 1] — R are arbitrary concave
functions. They then show that the SCMM class can be expressed in terms of threshold potentials.

Proposition 1. (Stobbe and Krause [21]) For ¢ € C%([0, M]),
M
0(0) = 00) + (M) = [ min (v} o a)dyfor v € [0.01]. (53)
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Discretized versions of Eq. can be efficiently computed when v belongs to a finite set, e.g.,

¢ (Z w) = 9(0) + (#(1S]) — 8(IS| ~ 1)) (Z)

€S 1€S

|S|—1
+ ) (2d>(k)¢(k1)¢(k+1))min{k,2xi}. (54)
k=1

i€S

A Hierarchy of Submodular Functions. Consider now a finite set V' = [n], ¢; € R>q, b; € R>qU{oo},
w;; € R>p, and S; CV fori € C, j € V. Consider the following classes of submodular functions:

1. Weighted cardinality truncations (WCT) functions which take the form f(x) = >, ¢V, 1,5,(x).
2. Weighted coverage (WC) functions which take the form f(x) = >, ¢i¥1,1.5,(x).

3. Facility location (FL) functions. f(x) = > ,comax{x;jw;; : j € [n]}. It is a subclass of weighted
coverage functions [20)].

The following chain relationship between these classes of functions holds:
FL ¢ WC c WCT ¢ SCMM Cc WTP C Submodular-Functions. (55)

The strict inclusions WC € WCT € SCMM was shown by Dolhansky and Bilmes [47], and the strict
inclusion SCMM C WTP was shown by Stobbe and Krause |21].

C OMA under WTP Functions and Matroid Polytopes and Derivation
of Bounds in Table [1]

For completeness, in this section, we consider set functions in the class of WTP functions (4], and discuss
implementation details (i.e., how OMA is instantiated) over the concave relaxations of functions in this
class. We note that, to obtain the most favorable dependence of regret constants on problem parameters,
we need to use an OMA policy coupled with a negative entropy mirror map. However, we prove a
negative result: OMA with negative entropy has linear dynamic regret when applied “out-of-the-box”
(see Proposition [2| in Section [C.II). Nevertheless, we are able to overcome this issue by extending the
so-called fixed share update rule, originally proposed for optimization over the simplex [51], 53], to
matroid polytopes (see Proposition .

We provide a summary of notation specific to this section in Sec. the negative result in
Section [C.II] the two setups of OMA in Alg. 2} the shifted negative entropy in Sec. [C.ITI| and the
Euclidean in Sec. (OGA) setup, the characterization of the supergradient of the concave relaxation
of WTP functions in Sec. [C.V]] and the derivation of the regret bounds and a comparison with related
work in Sec.

C.I Notation Summary

We denote by 15 = (1 (i € S)),cy € {0,1}" the characteristic vector of a subset S C V for 1 (x) € {0, 1}
takes the value 1 when x is true, and 0 otherwise. We consider the convex set ) as the matroid basis
polytope of some matroid M(V,Z) with rank r € N, i.e., the set ) is given by

Y=conv({lg:SeZ})C{yecl0,1]":|yli=r}. (56)
We denote by ds the upper bound on discrete derivatives of f, which is given by
o & max (£ (D) = F(O)} = max {f({iD)}. 67)
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C.IT A Negative Result

OMA configured with the negative entropy mirror map ®(y) = Zye[n] y; log(y;) which enjoys sublinear
static regret over the simplex Y = A,, C [0, 1] does not maintain such a guarantee for dynamic regret.
We prove this negative result in Proposition [2] through a simple construction; since Ly = oo in this
setting, then Asm. [f]is also necessary for OMA to yield a sublinear dynamic regret policy. Formally:

Proposition 2. OMA in Alg. @ configured with negative entropy mirror map ®(y) = Zye[n} y; log(yi)
has linear dynamic regret (Pr > 0) under simplex constraint set ) = A,, C [0,1]" for any n € R<y.

Proof. Consider n = 2, and the following rewards fi;(x) = x; for ¢ < T/2, and f;(x) = x2 for
T/2 < t < T. The dynamic optimum selects x; = (1,0) for t < T/2, and x, = (0,1) for
T/2 <t < T incurring a total reward of T'. It is easy to verify that the policy’s state is given by
Xp = (e(t—l)n/(e(t—l)n +1),1/(e®Dn 4 1)) for t < T/2 and x; = (e(T/2—1)n/(6(t—1—T/2)n + e(T/2=1)m),
e(t=1=T/2)n /((t=1=T/2)n 4 e(T/Qfl)”)) for T/2+ 1 <t <T. Thus, the regret is given by

Pa)—T ok e et T/4 = QT 58
t =1 — ° > = .
regrety 5(Pa,) 2t —m 1T 0 e — / (T) (58)
—_————
<1 <1/2
This concludes the proof. O

We overcome this negative result next, by extending the so-called fixed share update rule, originally
proposed for optimization over the simplex [51], 53], to matroid polytopes (see Proposition .

C.III Shifted Negative Entropy Setup

Let v € [0,4/e72 + 1/4 — 1/2] be a shifting parameter where y/e=2 4+ 1/4 —1/2 & 0.12. The shifted
negative entropy setup of OMA, defined as

O(y) &> (yi+7)log(yi + ) for y € D £ (—y,00)". (59)
i€[n]

Note that it holds V®(y) = (1 + log(y; + 7));e[, and (V®) ! (§) = (exp (i — 1) — ) for y € D and
y € R™. Thus, at timeslot ¢, the steps in lines 2—4 in Alg. [2| correspond to the following update rule

Zi41,i = Yrie ™I 4y (e — 1) for i € [n]. (60)

Note that this update rule has the same form as the fixed share update rule [51), 53]. However, this
policy extends beyond the simplex.

It is easy to see why the pure multiplicative update rule obtained by OMA in Alg. [2] configured
with the negative-entropy mirror map fails to provide sublinear dynamic regret guarantees through the
constructed scenario in the proof of Proposition [2l The adversary can drive the state of the algorithm
to arbitrary close to (1,0), but when the best decision changes to (0, 1) the algorithm fails to adapt
quickly purely from a multiplicative update. This is why the additive term controlled by = is needed,
which also allows us to control Lg < log(1/7).

We summarize the properties satisfied by this setup in the following proposition.

Proposition 3. Consider a matroid basis polytope Y with rank r defined in Sec. @ andy; = H%mp(r/nl).
Then, Asms. @ are satisfied under the mirror map defined in Eq. (ve[0,\/e2+1/4—-1/2])
under the bounds in Table[3.
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Proof. Strong Convexity. Since ® is twice differentiable it is sufficient [9] to show that yTV2®(w)y >

T_:,yn ly||? for every w € Y and y € R", so that ® is i strongly convex w.r.t. the norm || - ||; over
the set ).
VA(wy = ) /A S it y) (e Y (61)
y V= 2ty Tl \Zuieln] Wi T 7 )\ Zoieln] wity
i€[n]
2
1
> Vw; + > y 62
||W+71||1 Z ' \/7 T+l I (62)

The inequality follows from Cauchy—Schwarz inequality.

Bregman Divergence Bound. Consider a point y; = Ha}jmp(r/nl) € Y, thus for y € Y the Bregman
divergence Dg(y,y;) is given by

Yi + 7y Yi + 7y
Ds(y, < Dg(y,r/nl) = i +7v)lo < >+7‘—i§ i + ) lo < )
o(y,y1) < Do(y,r/nl) igm(y 7) log Y p——— Y igm(y 7) log py P

r(1+7)log (m) ) (63)

The upper bound is obtained by setting y € Y N {0,1}".

Mirror Map’s Lipschitzness. The gradient of the mirror map ® is upper bounded by Lg = log(1/7v) — 1
under the || - ||o norm.

It is straightforward to check that all the properties in Asm [4] are satisfied. O

Corollary 2. Under WTP reward functions in Eq. and concave functions in Fq. @, RAOCO policy
in Alg. [ P equipped with an OOMA policy in Alg. [3 configured with shifted negative entropy mirror

2<r(1+7) log(%) +2(log(1/'y)fl)PT>

map fory € [0,v/e 2+ 1/4—1/2] and a fized learning rate n = \/ T’Zt;ﬂ“gt—g?“g

has the following a-regret

aregrer(Pa) < |20+ 9m) (r(1-49)10g (U522 4 2(tog(1/7) - 0r ) 3 e~ g e (64

te[T)

The corollary follows directly from Theorem [7] and Proposition 3] Note that when Pr = 0 and
v = 0, the regret is a—regret(Py) = O (r\/log(n/r)T). When Pr > 0 and v = 1/n, the regret is

a—regret(Py) = <\/7“ rlog(n/r) + log(n )PT)T>.

C.IV  Euclidean Setup

The Euclidean setup is defined for the squared FEuclidean norm mirror map, i.e.,
o(y) = *HYHQ fory € D £ R". (65)

Note that it holds V®(y) =y and (V‘b)_l (y) =y fory € D and y € R™. Thus, at timeslot ¢, the
steps in lines 2—4 in Alg. [2| correspond to the Online Gradient Ascent update rule

Zit1 =Y+ N8 (66)
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The Bregman projection step in line 5 Alg. 2] corresponds to the Euclidean projection.

0] P : 2
Yir1 = Upnp(zit1) = 3 (z41) = argming ey ||ze11 — yl[3- (67)
We summarize the properties satisfied by this setup in the following proposition.

Proposition 4. Consider a matroid basis polytope Y with rank r defined in Sec. @ and y, = 113(0).
Then, Asms. ﬁ are satisfied for the mirror map defined in Eq. under the bounds in Table@)

Proof. Under this setup the Bregman divergence is given by Dg(y,y) = %Hy’ —y||3 and thus ® is
1-strongly convex w.r.t. || - ||2 (from the definition of strong convexity). The upper bound on Dg(y,y;)
T

for y, = HSI'}(O) is given by 3|y|> < 5. The gradient of the mirror map ® is upper bounded by
Lo = maxyey||y|loo = 1. It is straightforward to check that all the properties in Asm are satisfied. [

Corollary 3. Under WTP reward functions in Eq. and concave functions in FEq. @D, RAOCO
policy in Alg. || Px equipped with an OMA policy in Alg. |9 configured with Fuclidean mirrr map

r+2Pr B has the following a-regret
2

and a fized learning rate n = S cmlg—er 2
te[T) t~ St

T
a—rtegret(Px) < | (r +4Pr) > |lg; — g7 [13. (68)
t=1

The corollary follows directly from Theorem [7] and Proposition [3]

Note that all the OCO regret results in this paper follow from Corollaries [2] and [3] In particular, the
static non-optimistic regret guarantees are obtained for Pr = 0 and gf = 0. The dynamic non-optimistic
regret guarantees are obtained for Pr > 0 and gf = 0. Finally, the non-dynamic optimistic regret
guarantees are obtained for Pr = 0 and gf # 0.

C.V  Supergradient Computation

We conclude our description of the different setups of OMA by providing an explicit expression of the
supergradient of the concave relaxation of WTP functions.

Proposition 5. A supergradient of f : [0,1]" = R>q in Eq. @D at point'y € [0,1]" is given as

g(y) = | D_cwnsL (7€ SeA Y yjrwy <be ) (69)

teC §'€S, jev

where A is a logical and operator.

Proof. Consider the concave relaxation ¥ of a threshold potential ¥ in Eq. given by

Uy 5(y) £ min q b, > wjy; ¢, for y € [0,1]". (70)
JES

We omit the parameters b, w, S when they are clear from the context. We verify that the vector

g'(y) = (wj]l (j eSA Zj’es yjrwy < b)) ; is a supergradient of W(-) at point y, i.e., it holds
Jj€

U(y) - T(y)>g'(y) (y—y'), foreveryy €R" (71)
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Mirror Map & Domain D Dual-primal update step Str. convexity p|Bregman div. bound D2 Lip. const. Lg
3 ; X T
S i (i + N loglyi + M| (=700 [ze41,i = (Wi + D™ =y el 1/ +m) r(1+ ) log (T3227) log(1/) — 1
S vi log(yi) RZ, 41,0 = et € [n] r rlog (2) o0
3IyI3 R™ Zi4l =Y+ M8 1 min {r,n —r} /2 1/2

Table 3: Properties of the different mirror map choices of OMA in Alg.

Consider » g w;y; > b, then it holds

U(y) = U(y") = b—min ¢ b, > wyjj o >0. (72)
jES

gy)-o-y) =D g —v) =D wily —ypi [ D wyyy <b] =0 (73)

jeVv jeS j'es
< U(y) - ¥y (74)

Thus, when Zje gw;y; > b the inequality in Eq. holds. It remains to check if it holds when
> jes wiy; < b. We have

g =) =D g —v) =D wily; —v)) =Y wiy; — > _w;y] (75)

jev jes jes jes

Sijyj—min b,ijy; < min b,ijyj — min b,ijy; (76)
jes jeS jES JjES

=U(y) - ¥(y). (77)

The vector g'(y) is a supergradient of \i/( -) at point y. We conclude the proof that by noting
that f(y) = Y ec Cg\ifbbwe,se (y), and it is straightforward to check that 0 (dec cﬂlbbwbse (y)) =

> rec €O (‘i/be,wﬁe (y)) from the definition of superdifferentials.

C.VI Regret Bounds Derivation and Comparison with Related Work

In this section, we first discuss the derivation of the regret bounds attained by this work in Table
Then, we discuss algorithm-specific parameters of related work.

Regret Bounds. We discuss the regret bound appearing in Table [I, We obtain the tightest regret
bounds by employing the negative entropy setup of OMA in Sec. [C| allowing us to optimize the
regret constants. In particular, the regret of OMA when configured with the negative-entropy mirror
map grows logarithmically w.r.t. the problem dimension (i.e., O (r\/log(n/r)T) in Corollary

instead of sublinearly as in the case of OGA (e.g., O <\/ rnT) in Corollary . We note that the
related work assumes that the reward functions are bounded by 1. We make the same assumption
to better compare our bounds in Table However, note that our bounds are further scaled by
doo = max;cpy {f({i}) — f(0)} = max;epn) {f({i})} € [1/n, 1] which can further improve our bounds
under the static and dynamic full-information settings.

Algorithm-specific Parameters in Related Work. Niazadeh et al. [4] require a Blackwell ap-
proachability policy. We denote by O, its time complexity. Streeter et al. [I] require a color palette size
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parameter ¢, € N. This parameter creates ¢, expert algorithms (OCO algorithms operating over the
simplex) for a single slot, e.g., over partition matroids the algorithm instantiates rc, experts. Harvey
et al. [2] require a discretization parameter ¢ > 0 to convert their continuous-time algorithm to a
discrete algorithm, an oracle that gives the multi-linear extension with time-complexity Oy,, and swap
rounding [F| Works that operate on continuous DR-submodular objectives [30} B}, B2] require OCO
policies with a time complexity Oqco; moreover, these algorithms operate over the multilinear extension
with time complexity Oy,. The decisions can be rounded through a randomized-rounding algorithm
to operate over matroids (e.g., swap rounding . We assume that these algorithms have access to a
decomposition oracle; then the rounding step has an additional time complexity of O (rzn). Kakade
et al. [33] operate on Linearly Weighted Decomposable (LWD) functions, i.e., reward functions of the
form f;(x) = ®(x) - wy, where ®(x) € R® is a vector-valued set function known to the decision maker,
and w; € R?® are time-varying vector-valued weights selected by an adversary for some s € N. This
algorithm requires access to an a-approximation oracle with time-complexity O,.

D Proof of Theorem [2

Proof. Consider the sequence of reward functions {f1, fo,..., fr} € F! and the associated sequence of
concave relaxations { fl, fg, cees fT} € FT'. Then,

max Z fi(x) < max Z fi(x) < max Z fiy (78)
te[T) tG[T tE[T]

The first inequality is implied by Eq. @ in Assumption [2| and the second inequality holds because
maximizing over a superset ) = conv (X) 2O X can only increase the objective value attained. The
total expected reward obtained by the RAOCO policy is given by

= . ;
Z fe(xt) Z Ez [fe(x¢)] Z Ez [fi(E(yy))] 2 o Z fe(ye)- (79)
te[T) te[T) te(T] €[T]
From Egs. and , it follows that:
amafot —E= th X¢) <OémaXth —ath Yi)- (80)
te[T) te(T) te(T)

We conclude the proof by noting that the above inequality holds for arbitrary sequences of reward
functions {f1, fa,..., fr} € FL. O

E Proof of Lemma [

We begin by proving a series of auxiliary lemmas.

Lemma 3. Consider n € N, y € [0,1]", b € Rsg, and w € [0,b]". The following holds

mln{b Zyzwl} >p— bH — y;w;/b). (81)

€V eV
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Proof. We define A,, £ b — b ], (1 — yswi/b) and B, £ min {b, >,y yiw; }.
We first show by induction that, if A,, < By, then this inequality holds also for n + 1.
Base Case (n=1).

A1 =b—b+yiw = yrw; = min{b,w1y1} = By. (82)
Induction Step.
Apsr=b—b ] (1 yawi/b) (83)
1€[n+1]
=b—b [] (1= yiwi/b)(1 = g1 41/D) (84)
i€[n]
=b—b [] (1= yiwi/b) + (byngrwnr1/0) [ (1 - yiwi/b) (85)
i€[n] i€[n]
= Ap + Ynr1Wn1 H (1 — yw;/b) (86)
1€[n]
< An + Ynt1Wni1- (87)

The last inequality holds since by construction w; < band thus 0 < y;w;/b < 1,and 0 < [y (1 — yw;/b) <
1. For the same reason, 0 < [;cp,417(1 — giwi/b) < 1 and thus, by (83), we have A, 1 < b. Moreover,
note that if B, = b then B,,+1 = b. Therefore:

Ap+1 <min{b, A, + Ynt1Wnt1} (88)

< min{b, By + Yn+1Wn+1} (89)

_ {min {b, Z?—T yzwl} = Bui1, if B, <b, (90)
min{b,b + ypr1wWnt1}y =b= Bpy1, if B, =0b,

and the proof by induction is completed. O

Lemma 4. Consider n € N, y € [0,1]", b € Rsg, and w € [0,b]". The following holds

b—b H —yiw;/b) > (1 —1/n)" min < b, Z Yiw; o, (91)

i€[n]

Proof. Consider y" = (y;w;/b);ejn) € [0,1]". Then, it follows from [40, Lemma 3.1].

1-1J[A-y) =1 -1/n)"min1, ) ys. (92)
i€[n] i€[n]
Replacing y’ by its value and multiplying both sides by b yields Eq. . O

Lemma 5. Consider n € N, y € [0,1]", and w € [0,1]". The following holds

H — w;y;) Z H (1—w) sz H (1 — w). (93)

i€[n] Sealnl ieS i€S  ien]\S
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Proof. We show by induction that, if Eq. holds for some n € N, then this equality holds also for

n+ 1. Define An(y) 2 [iep (1 - wigr) and Ba(y) 2 Seam Mies(l — ) Mics wi e s(1 - ws) for
n € Nand y € [0,1]".

Base case (n = 1). In this setting the powerset of {1} is 211} = {0, {1}}.
l—wyr = > J[0=ww)]]w [] Q—w) (94)
Se{0,{1}}ieS €S i€[n]\S
=1—w; + (1 — yl)wl =1—-wiy. (95)

Induction Step.

7”L+1 Z Hl_yz le H (1—’(02)

Sealnt1lieS €S i€n+1)\S
n+1¢S
+ Z H(lfyi)Hwi H (1 —w;) (96)
Seoln+1] €S i€S  ien]\S
n+1es
= > J[a-w)[Jw J] (0—w)@—wnpa)
Sealnlies i€S  ie[n)\S
+ > [[a=w) [Jw TI (= wdwnsr(t = ynsa) (97)
Se2lnl €S i€S  ig[n]\S
= An(y)(1 — wpt1)(1 = wny1 + w1 (1 = Yng1)) = Ana(y)- (98)

The first equality Eq. is obtained from the definition of B, (y) and splitting the summation over the
set 2" into a summation over two subsets {S colrtllint1¢ S} and {S colntll.ni1e S}.
Equation is obtained by factoring the terms that depend on n + 1. Equation follows from the
definition of A, (y). This concludes the proof.

O
Lemma 6. Consider random variables z; € {0,1} ;i € V with expected values Elx;] = y;,1 € V that are

negatively correlated. The random variables w;xz; € {0,w;} are also negatively correlated for non-negative
weights w; € [0,1],7 € V.. The following holds for every S CV

H(l — wl:z:l)] S H(l — wiyi), E [H(l + w; — ZE,)] S H(l + w; — yz) (99)

€S €S €S €S

E

Proof. We exploit the alternative expression of [ [;c5(1 — w;x;) developed in Lemma |5 and the negative
correlation property to prove this proposition. Consider Lh.s. term in Eq.

E[H(l ].E Z [Ta-a)JJw [ @-w) (100)

€S €25 ieS’ €S’ ieS\S’
= > E [H(l —xi)] [Tw ] G—w) (101)
S'e25 €S’ €S ieS\S’
<> J[a=-w [Jw [] Q-w) (102)
S’'e25 ies’ €S’ ieS\s’
=1 = wiys). (103)
€S

O
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Putting everything together, consider y € [0,1]" and x = E(y) stated in the Proposition. From
Lemmas [BHGl we have:

Ez[f(x)] = E= Z ¢; min ¢ b;, Z Wi ;T (104)
e’ JjES;
€ i
> Bz [ e[ b H( xw”) (105)
1eC JES;
(A2
> S e - [ ( yw”) (106)
ieC JES;
1\2
Z <1 - A> Z C; min bi, Z Wi ;Y5 . (107)
ieC JjES;

Note that when b; = oo, then E= [min {bi, Zjesi wmmj}] = min {bi, Zjesi w@jyj} due to linearity.
This concludes the proof of Lemma O

F Swap Rounding

In swap rounding [37], we are given a fractional solution y € ) = conv (X). We assume that y is
decomposed as a convex combination of bases (i.e., maximal elements) of X, i.e.,

K
y = Z'ykzk, where vk € 10, 1], Z'yk =1, and z € X,k € [K], are bases of X. (108)
k=1

We note again that Carathéodory’s theorem implies the existence of such decomposition of at most
n + 1 points in X’; moreover, there exists a decomposition algorithm [49] for general matroids with
a running time O (n6). However, in all practical cases we consider (including uniform and partition
matroids) the complexity is significantly lower. More specifically, on partition matroids, swap rounding
reduces to an algorithm with linear time complexity, namely, O (mn) for m partitions [50].

In short, swap rounding randomly picks between pairs of basis vectors over several iterations,
producing a random final integral solution. Let 8 £ ZZ,:l Yk, k € [K]. Then:

e Set x; = z1.

e Then, at iteration, a random selection is made between vector x; € X and basis zx11 € X to
produce a new integral x;.1 € X as follows:

X, with probability B
X141 o (109
Ziy1, Wwith probablhty
The authors refer to this randomized selection as a “merge” between x; and zgy1.
The final vector xx is the output of the algorithm and satisfies, by construction:
K
Xg] = Z’Ykzk =Y. (110)
k=1
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G Extensions

G.I Dynamic Setting

The derivation of Theorem [4] follows the same steps as the proof of Theorem [2| Recall that Ay (T, Pr) C
XT is the set of sequences of decision in a set X with path length less than Pr € R>q over a time
horizon T defined in Sec@ Consider the sequence of reward functions {f1, f2,..., fr} € F' and the

associated sequence of concave relaxations { fi, fas. o) fT} e FT. Then, Asm. [2| implies

max Z fr(xy) max Z fi(x) max Z fily,). (111)

(xt)i—1€Ax (T.Pr) /2 7] (Xt)tT:leAX(TJDT ) te[T] (yt)t 1 EAV(TPr) i)

The first inequality is implied by Eq. @ in Asm. [2, and the second inequality holds because maximizing
over a superset Ay(T, Pr) 2 Ax (T, Pr) can only increase the attained objective value. The total
expected reward obtained by the RAOCO policy is given by

.
Ez Z filxt)| = « Z fi(ye)- (112)
te[T] te[T)
Eqgs. (111]) and (112)) imply that
a-regrety p, (Px) < a-regretr p, (Py). (113)

The OCO policy Py is OMA in Alg. 2| configured with an appropriately selected mirror map satisfying
Asms. (e.g. OGA by selecting ®(x) = 1[/x[|3). Then under Asm. (1} we conclude from Theorem
the following

a-regretr p. (Px) < a - regrety p. (Py) < \/2/p (D% + 2LsPr) L2T = O (\/PTT) , (114)

where L, p~1, D are all bounded from above by a finite quantity.

G.II Optimistic Setting
Under Asm. , the following inequality holds from Eq. (113) in the dynamic setting,.
a-regretr p, (Px) < a-regrety p,. (Py). (115)

Combining the above inequality and Theorem [7] yields the following upper bound:

T T
a-regrety,p, (Px) < o+ | 2/p(D? +2Lo Pr) ZHgt grll = PrY llg, — gflI2 (116)

where L, p~1, D, Pr are all bounded from above by a finite quantity.

G.III Bandit setting

In this section, we provide a full description of the Limited-Information Rounding-augmented OCO (LI-
RAOCO) policy in Alg.[5} The policy decomposes the timeslots [T'] to T'/W (assuming w.l.o.g. T/W € N)
sequences of equally-sized contiguous timeslots denoted by W; 2 {(I — W 4+ 1,(I — )W +2,...,IW}
for [ € [T/W]. The algorithm takes as input exploration matrices H; and shrinkage parameter 6 > 0.
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(1 — 1/e)-regret (Bandit)
Paper || Prob. Class Static Dynamic Optimistic Time
Uni. [ Part. [Gen. Part. Part.
o 2z
[33] LWD n3T3 X X TO,
2 1 2 4
[4] GS rn3 log3 (n)T 3 | X X X X T>0y
T 2 2
[1] GS logg(n4) (nfp”I’Q) 3T3 X X X n2cp
I5] GS r3n3T3 X X X nr
. T/W | ~ 2
;Fvlgi as ard/3,4/372/3 X || PrTt/5 W\/PT 2Ly 18—l lz|| nr
+T(6+1/W)

Table 4: Order (O (-)) comparison of regrets and time complexities attained by different online
submodular optimization algorithms for general submodular (GS) under the bandit setting. We
also include Kakade et al. [33], who operate on Linearly Weighted Decomposable (LWD) functions.
Competing algorithms that outperform us either only operate on limited constraint sets |4, [I] or the
LWD class [33]; with the exception of the work of [5] which attains a tighter regret in the static setting
over GS class, however when we employ a specialized static OCO algorithm we attain the same bound
(see the discussion in Sec. . Our work also generalizes to the dynamic and optimistic settings in the
bandit setting.

In what follows we consider H; = 0I. Moreover, the algorithm utilizes an OCO algorithm Py, operating
over a properly designed convex subset Vs of a set ). The decisions are sampled through a rounding
scheme Z:) — X at a given timeslot. The policy computes gradient estimates to explore the best
actions by an OCO algorithm. The regret bound of the OCO policy is exploited by freezing the decision
obtained by the algorithm for a time window of size W € N. Overall, the algorithm attains the bound
specified in Theorem [6] In what follows, we describe the decision set X, the construction of the subset
Y5 C Y, and the rounding scheme =. Moreover, we introduce additional definitions that include the
continuous extension of the reward function induced by the randomized rounding scheme, and its
auxiliary function. We finally show that the gradient estimates in Alg. [5[(line 21) are unbiased estimates
of the gradients of the auxiliary function; this reduction relies on the reduction of Wan et al. [5]. We
restate Theorem [0 and discuss how the regret bounds under dynamic and optimistic settings are
obtained when OOMA in Alg. [3]is selected as the OCO policy.

Under this setting, we restrict the decision set X to partition matroids. Given a ground set V' = [n],
partitions V; C V, cardinalities r; € N for ¢ € [m], the set X' is given by

X2 {xe{0,1}”;zjevixj <riie [m]}. (117)
Let n/ = > icm) |Vil X 5, we define the alternative representation of the partition matroid X given as

PrE {x {0, 1) s Shey, mijp < Lj €[] i € [m]}, (118)

where z; ; 1, indicates whether item k € V is selected from partition V; at slot j. Consider the mapping
T : X' — X defined by

T(x) 2 (min {1, S icpmpen: iep x;’j’k})kev . forxe X (119)

It is easy to see that maximizing a function f : X — R>( over the sets X or {T'(x') : x’ € A’} attains
the same value, i.e.,

maxyex f(T(x')) = maxxex f(x). (120)

Thus, we could simply optimize over the set X’ and map to points in X’ through the mapping 7.
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Algorithm 5 Limited-Information Rounding-augmented OCO (LIRAOCO) policy

Require: Exploration parameter 6 € (0,1/2n], OCO policy Py,, H;,l € [T/W]
1: for W, = Wi, Ws, ... s Wrw do > W] is a sequence of |[W;| = W contiguous timeslots s.t.
[T] = Ule[T/W] Wi

2: Draw t; uw.a.r. from W,

3: for t € W, do

4: if t =t; then

g Yl < Pyg ((ys)ls 2 (rs) 11)

6: Sample z from Z where P(Z < z) = [; 1eX:XIS)( 1} 1(se0,1])ds
7: Sample vl u.a.r. from S, _1

8: if z; > 5 then

9: Sample w; from {0,ej,e2,...,e,} w.p. P(; =0)=1/2 and P(u; = ¢;) = 1/(2n)
10: iz (] + (Hv) Tw) wy)

11: Play x; < Z(y;)

12: Receive reward fi(x¢)

13: Il 202 fi(x;)(1 = 21 (w; = 0))

14: else

15: Sample u; uw.a.r. from {ej,eq,...,e,}

16: Assign u.a.r. y; zlyjs + %ul ory; + zlyjS

17: Play x; « Z(y,)

18: Receive reward fi(x)

19: i+ dan (Hv)Tw) fi(x)(1 =21 (y; = z1y7))
20: end if
21: Construct an estimate of supergradient g; < nZlHZ_IVl
22: Construct a linear function r)(y) =y - g
23: else
24: Play x; + é(y?)
25: Receive reward fi(x¢)
26: end if
27: end for
28: end for

We define the fractional de(3151on set for the OCO policy Py, employed by LIRAOCO policy in
Alg. Ito be the convex set J = conv (X”). We define an appropriate subset of ) denoted by Vs s.t. for
every point y € Vs we can form a ball of radius § € (0, 1) contained in ). This set permits the decision
maker to explore (perturb) without exiting the original decision set . We provide an illustration in

Fig. 8l Formally,

Proposition 6. Given the conver set ) = conv (X') in Eq. (118) and 6 € [0,1/ (2max {|Vi| : i € [m]})],
every ball formed around points in

Vs & {((1 = 20[Vi)yig + 1vi10) i pmiier) Y € y} (121)
are contained in Y, i.e.,
y+ovey,  fory€ls veBn. (122)

Proof. Note that the set ) is a product of simplexes, i.e., Y = X ielm] (Ay;)", where Ay, is a simplex
with support V;. We consider the subset Asy, = {61, + (1 — 2|V;|6)y : y € Ay, } for 6 € (0,1/(2|V;])).
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Figure 3: Illustration of Proposition @ under the shrunken set )j, any ball formed around points
y € Y5 of radius 9§ is contained in Y.

Let y; ; € Ag)y; for j € [ri] and @ € [m]. It holds that Yijtovij=2¢ (1|w + vi,j) +(1- 2\1/7;\6)y;7j
for some point y;}; in Ay,. The point ﬁ(ll‘él + v; ;) satisfies 0 < ﬁ(vw + 1y,)) < ﬁl‘m
(element-wise). Thus, it holds 5 (v ; + 1)y;) € conv ({0, ey, ez,...,€e1;}) € Ay,. Thus, we have

2|V
Yij+0vij = (1=2[Vil8) yi; +2[Vilo (1), + vij)/2|Vil. (123)
~—
€ Ay, € Ay,

It follows that y; ; + dv;; € Ay; because Ay, is a convex set, and y; ; is a convex combinations of two
points in Ay;. Since ) is a product of simplexes, it holds that

Vs = {((1—25|W|)Yk,z+1|m5) :yey}.

i€[m],j€[ri]

We provide a definition of the rounding scheme = : ) — X employed by LIRAOCO in Alg.

Definition 4. [5, Extention Mapping] The randomized rounding scheme 2y X defined for sets
Y = conv (X’), and Y in Egs. and . Given a point' y € Y, an intermediate randomized
rounding scheme & :' Y — X' outputs a point w € X', by sampling a single item k € V; from the
distribution y; ; /|y, jlli with support Vi w.p. |y, ;lli and assigns ey to wi;, otherwise it assigns 0

w.p. 1—|ly;ll1 to wij, for every i € [m] and j € [r;]. The rounding scheme = is then defined as the
composition mapping T o & : Y — X where T is provided in Eq. (119).

Definition 5. A function f : Y — Rxq is a DR-submodular function if for any y,y’ € Y
fly +tei) — fly) = F(y' +tes) — F(¥), (124)

wherey <y, y +te,y +te; € Y. When f is differentiable we have Vf(y) > Vf(y') fory <y’
When f is twice differentiable, the DR-submodularity is equivalent to

<0, foralli,j € [n] andy € Y. (125)

Moreover, f is monotone if f(y) < f(y') wheny <y’

Definition 6. [32, Auzillary Function| For a monotone DR-submodular function f : Y — Ry satisfying
f(0) =0, its auziliary function F': Y — Rxq is defined as follows

Lexp(z — 1) »
Py 2 [ 2Dy, foryey. (126)
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Definition 7. For continuous function | : R* — R and invertible matrizc H € R¥™? an H-smoothed
version of | denoted by ™ is defined as

H(x) 2 Ev~g, l(x+ Hv)], (127)
where v ~ B, indicates that v is sampled from the n-dimensional unit ball By uniformly at random.

Remark that when [ : R — R is a linear function, then [ = {H.

Lemma 7. [3, Lemma 5.1] Given a submodular monotone function f: X — Rxg s.t. f(x) <L for
x € X and f(0) = 0. The randomized rounding scheme = : Y — X in Def. |4 deﬁnes a multi-linear,
monotone-increasing, DR-submodular, and L-lipschitz (w.r.t. || - ||s) function f:Y — Rx>o given by

F) 2B 2 [f]. fory eV, (128)

Proof. The proof follows the same lines as the proof of [5, Lemma 5.3].
Multilinearity. Given a point y € ), we have

F¥) = Exozgy) [F(0] = Ewngiy) F(T)] = Y Plw =x)f(T(X)). (129)
x'eX!
Note that P(w = x') = Hze[m} [Liep Plwi; = x; ;); moreover, P(w;; = X; ;) = y; j, when xj ; = ey,
otherwise P(w; j = x; ;) =1 =y yijk when x} ; =0, for i € [m] and j € [r;]. The factor f(7'(x'))
is a constant independent from y, so we conclude f is a multilinear function.
Monotonicity and lipschitzness. Let e;jr = (1((7', 5", k') = (i,4,k)))irepm).j7elr]wev, and & jx =1 —
€; j k- Since the function f is multilinear, it holds that
f(y)  fly®Xein)— flyoei )

= . LAy 130
0Yi j k A (130)

where A =1 — Zklevi Rtk Yok > 0, and the binary operators & and © are component-wise maximum

and minimum operations, respectively, i.e., y Dy’ = (max {yi7j7k, yl’-j k}) il hEV; andy oy’ =
§ 1e€\m|,g€|r;], ke
i ik Y Consider the t LY X' 5 X and LY, : X' = X'
(mln {yl%k yz’j’k}>l€[m],j€[n] revs onsider the two mapping ik and L,
defined as follows:
(L?-k(x)> _ Jxy el (xy»=0) if (i’,j'.) = (i,7), ’ (131)
J> i 5! Xt jt otherwise,
(Lie'k(x)> _ g Gy # ex) i (7,57) = (0. 7), (132)
2 il 5! Xif jt otherwise,

for i € [m],j" € [r;] and x € X’. One could check that

F(7 @ Aeis) = Bumety) [fTEG@D))] ) Fly ©Neiin) = Bunery) [FTEGR@))] - (133)

Thus, it holds

N A A _ E,- T(LY. (W) — FIT(LS. , (w
gi(j’i _ f(yGBAei,j,k)/\— fy©oeijr) o) [f( (Ll /\))) STt )))} >0. (134)
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Because A > 0, Lie’j’k(w) < L??M(w) (element-wise) by construction, and f is monotone increasing.

Note that L

Lik(w) # Liejk(w) only when w; ; = ej, or w;; = 0. So, we have

3f(3’) 1- Zk’e\/i:k’;ék Yijk

P(wij € {er,0}) _
Vi jk

< L
L= > kv 2k Yig ke L= > hevik Yig o

= L. (135)

The function f is M-lipschitz w.r.t. || oo

DR-submodularity. The partial derivative of a multilinear function is also multilinear. So, we have the

following
Pfy) 0 (fy®rein) — fly i) (136)
i jkOYir jr i OYir jr ket A

flye e i ® Ney jriw) — fye € it ®Aej k) — fly®Neyjweoe i)+ f(yoeirOer )
AN ’

(137)
As established in Eq. (133]), it holds

Fly @ Xeiju ® New jrw) — f(y © € jw @ Neijn) — fy @ Newjuw ©eijr) + F(y © ek © ey jiw) =

(138)
Ewne(y) f(T(LS?j,k(LzE‘?,j’,k’ (@)))) — f(T(LS?j,k(Lz‘e’,j’,k’ (@)))) — f(T(L?j,k(LzE‘?,j’,k’ (@)))) (139)
+ (LT (L g (@) - (140)

Considering that f is submodular and the second-order differences definition of submodularity [71], we
obtain f(T(L; x(Ly 1 (@) = F(T(LE; (L 31 4o (W)))) = F(T(LE; 1 (L 51 4o (w)))) > 0 for any w € A",
It follows that the second-partial derivative is non-positive
*f
& <0. (141)
Y, kO it b

Thus, f is DR-submodular. This concludes the proof. O

Lemma 8. [8 Corollary 6.8] Let H € R"*"™ be an invertible matriz, | : R" — R be a continuous
function. Then

ViH(x) = nEy.s, , [l(x+ Hv)H 'v], (142)
where v ~ S,,_1 indicates that v is sampled from the (n — 1)-dimensional unit sphere S,_1 u.a.r.

Proof. This proof follows the same lines as the proof of [Lemma 6.7][§].

Part I. Consider the case when H = §I. Using Calculus Stoke’s theorem, we have

Vx ( l(x+ v)dv> = [ l(x+ u)idu. (143)
Bs Ss HuH
We have the following
1
ol _ —
17(5) = B 16+ 8)] = s /B V) (144)
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where vol(Bj) is the volume of the n-dimensional ball of radius d. Similarly, we also have

Byus, . [[(x + 6u)u] = Vol(én_l) / (x + )L o (145)

The ratio of the volume of a ball in n dimensions and the sphere of dimension n — 1 of radii § is
vol(By,)/vol(S,—1) = §/n. Combining these facts with Eq. (143)), we showed that:

VI (x) = %vagn_l [l(z + 6v)V]. (146)
Part II. Let g(x) = I(Hx), and ¢'(x) = Eyep, [9(x + v)]. We have the following
nEy.s, , [[(x + HV)H 'v] = nH ! [I[(x + Hv)V] (147)
=nH™' [g(H 'x +V)v] (148)
=H 'V (H x) (149)
= H 'HVH(x) = VIH(x). (150)
This concludes the proof. O

Lemma 9. [32, Lemma 2/ Let f : R" — R be a monotone DR-submodular function and f(0) = 0, x,
y € R™. Let F' be the auziliary function defined in (126)). Then

1
VF(x) = /0 exp(z — 1)V f(z - x)dz, (y —x)-VE(x) > (1—1/e)f(y) — f(x), (151)

Proof. This proof follows the same lines as the proof of [32, Lemma 2|. It is simp}iﬁed for the case
when #(w) =1 and (w(z) = exp(z — 1)). It follows from the DR-submodularity of f:

~ ~

A 1 ~ A
f(y) = f(x) = /0 (y —x) - Vfx+z2(y —x)dz € [(y —x) - Vf(y), (y —x) - Vf(x)], (152)

for x <'y. The two inequalities follow from y > x+2(y —x) > x s.t. Vi(x) > Vfi(x+z(y—x)) > Vi(y)
for any z € [0, 1]; a direct result from the DR~submodularity of f, see Eq. (124 -

The gradient of F is given by VF(x) = Vy < 01 w]g(z : x)dz) = 01 %Vf(z x)dz =

fol exp(z — 1)V f(z-x)dz. Let w(z) = exp(z — 1). Consider the following:

1 X 1 F(ax 1 X
x-VF(x) = /0 w(z)x - Vf(zx)dz = /0 w(z) 8f€§2 )dz = /0 w(z)df(2x) (153)
. 1 v " L
= [u@ i) - [ wEied = wmfeo - [ w@fea s
A 1 A
_ x)— /0 w(2) f(ex)dz. (155)
We use integration by part and the fact that w'(z) = w(z).
1 1
y-VF(y) = /0 w(z)y - Vf(zx)dz > ; w(z)(y ® 2x — 2x) - Vf(2x)dz (156)
1
> [ w)fy © 20 - ) - 9 Fxs (157)
1 X 1 .
> < /0 w<z)dz> fo = [ w)ix)az. (158)
1-1/e



The first inequality is obtained considering y >y @ zx — zx > 0 and V f (2x) > 0 Combine Egs. ([155])

and ((158) to obtain
(v =) V() = (1 - 1/)f(y) - f(x). (159)
We conclude the proof. O

We define the following quantities which will be used in what follows.

av av, 1 '
Hi 2 {(ve,ug, 25, ) 1 s <1} By Z fily EMe(y) 2 — 3" Fl(y), foryel.
tEWl tew,
(160)

Lemma 10. [3, Lemma E.1] Consider H; and Favg defined in Eq. - the estimator l; in Alg. @zs
an unbiased estimator for ovy - VFavg(yl ), .

Ei| %H,vl} = ovi- VE™(y]). (161)

Proof. This proof follows the same lines as the proof of [5, Lemma E.1].
Part I (zx > 1/2). Condition on H;_1, vy, uy, 2, t;. If 27 > 1/2 and u; = 0, we have

- n 2an 4
E [ll | Hie1,vi, Zl,tz} =E |:_2azlftl (x,) | Hl—l,Vl,UJ,thz] = _7ftz(zl3’l) (162)
If z; > 1/2 and u; # 0, we have

- n 2an ,
E {lz | Hl—l,Vl,uz,Zl,tl} =E [—2Oézlftl (xt,) | Hl—l,Vl,ul,Zz,tl} = 7ftl(2l}’? + 20 (viOw)). (163)

Condition on H;_1, vy, 21, t;, to obtain

E || Hi1,vi 21t _ 1 _letl<ZZYl) T 2Oéinﬁtl(?«“lyz + 26 (vi © €;)) (164)
2

2n \ 4
=1
= a Z  (fulayt + 28 (i e) = i) (165)
n £ §
=« ﬂ5vl . eiM = advy - Vi, (2y?). (166)
izl Zl 8%

Part II (z; < 1/2). Condition on H;_1,vy,uy, 2z, 6. If z; < 1/2 and y; = zly?, we have

E [Zz ’Hl—l,vlaulazlatl} =E [—4and (vi - w) f,(x¢,) | i1, vi, g, 21, 1] (167)
= —4and (vi - w) fi, (z21y9). (168)

If 2 < 1/2 and y; = 2y} + 1/2u;, we have

E [fz | ’Hz—hvz,ubzz,tz} =E [4and (vi - w) fi,(x¢,) | Hi—1, Vi, wg, 21, 4] (169)
= damd (vi - w) fr, (2! +1/2u0;). (170)
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Condition on H;_1, vy, 21, 1, to obtain

E (L] i1, vi, 2.t = Z% (1/2(4an8 (vi - &) fi(zuy] +1/2e5) = daméd (vi - i) fu(aiy])))  (171)

=1
= 3206 (vi- @) (Fulay] +1/2e0) = fo () (172)
=1
n £ )
_ Z; 2/208 (v, - e5) 2T 21 tb(;’iyl) (173)
= adv; - Vi, (z1y?)). (174)

Part III. (z € [0,1]) Condition on H;_1, v;, to obtain

- Lexp(z—1) 1 ; §
E [ll ‘ Hl—lyvl} = /0 T a W Z <a5vl : vft(ZIYZ)> dz (175)
tew,
1 — ~
= / exp(z — 1) (aévl . Vflavg(zly?)) dz (176)
0 «
= dvi - VE5(y]). (177)
OJ

Lemma 11. [5, Lemma 3.2/ Consider H; and Ftavg defined in Eq. (160), the following holds for the
supergradient estimator g; in Alg. :

~ 2 4L2
E (g |Hi1] = VEYS(y]),  E[I&l3|Hi1] < 16% 7;2 . (178)

Part I. We have the following
/
E (g |Hi1] =Bves, , [E[&|Hi1,v]] =Evns, , [T;llv] =Eyv.s, , [n’v : vFlavg(y?)v} (179)

= VI}(0) = VI,(0) = VE™5(y)). (h(x) £ x- VE™5(y])). (180)
Recall that /T is the I-smoothed version of [ in Def. |7, which are identical since [ is linear.

Proof. This proof follows the same lines as the proof of [5, Lemma 3.2].

Part II. We have the following |[j] < 4aL. Tt follows that ||g]]2 < 40‘"(;%. Thus, we have

a2n/4L2
52

E [[&:/3/Hi-1] <16 . (181)
We conclude the proof. O

Recall that in the dynamic setting, the decision maker compares its performance to the best sequence
of decisions R(x});cr) with a path length Pr from the set

T
Ax (T, Pr) = {(xt)f’_1 e XT Y lxerr — x| < PT} ca’l,
t=1
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In the bandit setting, we define the following regularity condition that further restricts the movements
of the comparator sequence:

T
Ax(T, PT,W) £ {(Xt)?:l S XT : ZHXt-H — Xt” < Pr,x; = Xt/,t,t/ eWwW,l e [T/W]} C XT. (182)
t=1

We extend the definition of the dynamic a-regret in Sec. [6}

T T
a—egrety by (Px) & sup {() wax oY) - Y )}
Xt t=1

T
(ft)thle]:T x t:IGAx(T,PT,W) t=1

Note that this dynamic regret definition reduces to the static regret for Pr = 0, and the definition
in the full-information setting in Sec. |§| for W =1 (ie., a—regrety(Px) = a—regrety y (Py) and
a—regretTJ;T’l(’P,y) = a—regrety p (Px)).

Theorem 6 (Restatement). Under uniformly L-bounded submodular monotone rewards and partition
matroid constraint sets, LIRAOCO policy Px in Alg @ equipped with an OCO policy Py, yields
a—regrety p.w (Px) < W - regrety w p, (Py;) + LT 4+ 2a6r*n LT, where regrety y p, (Py;) is the
regret of an OCO policy executed for T /W tzmeslots

Proof. The performance of Py is measured against the comparator sequence

(X*,t)tT:1 € argmax y )T ey (T,Pr,W) Z fi(xe).

From the definition of the extension f in Lemma |7} we can always find a point y, , € )V such that
; T T

fi(xat) = ft(y*,t) for every ¢ € [T, Zt:l”y*,t - = > =1l Xut+1 — Xut|| < Pr, and Yt = Vi for

t,t' € W, for | € [T/W] since X, is an integral point in {0,1}". We define y; =y} for some t € W},

le[T/W].

T
Z ]. — 1/6 ft Xk t) ft(xt)] (183)

t=

r T

=E Z(l - 1/e)ft(Y*,t) -k [ft(Xt) ’Htl]] (184)
Lt=1
r T

=E|> (1 -1/e)fily..) — ft(yt)] (fily) = Eyz(y) [ft(x)] in Lemma D (185)
:t;1 A .

=E > (1 =1/e)fily.s) = Felyromw) Z Yrew) — fi(ye) (186)
Lt=1 t=1

T/W A ) 1 /W A

=E|W > (1-1/e)f"(y.)) = 260 m) | TE | D fly]) = filyy)|[Hia (187)
. T/W T IT

<E|W Z (1=1/e) [ (y,) = F8 (v %yw) +W+2a5r2nLT. (188)

The last inequality is obtained using ft(y?) — ft(Ytl) < L to yleld L term; moreover, consider
that ||y, — yf,*||2 < 6D (D < 2r) and f is n'L-Lipschitz (w.r.t. |- [2) (see Lemma , this yields an
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additional 2adnr?LT term (n’ < rn). It remains to bound E [ T/W(l —1/e) avg(y5 ) — Alavg(y?t/w])}

l,*

to complete the proof:

T/W A T/W
E > (1 -1/e)f™5 v — f50 ) Z VEEE) 5l -y [Ha ] (189)
=1 =1

< regrety . p,. (Py;) - (190)

The first inequality follows from Lemma [9] The second inequality holds because the gradient estimates
g, are unbiased estimates of VF® and the reduction of the regret bound of the first-order policy
Py, |8, Lemma 6.5]. We finally obtain the following:

T

LT
g (1—1/e)ft(%et) — ft(xt)] < W -regretyy p, (Py;) + W + 2a6r°nLT. (191)
t=1

E

O

LIRAOCO policy Py in Alg. 5] equipped with OOMA in Alg. 3] configured with ® satisfying
Asms. as Py, has the following regretﬁ

W W LT
a-regret (Py) < — (47«2 + 2L¢PT) + 7” S Ellg - efl?] | + T + 2060l (192)

K leT/W w

This bound is obtained considering the regret bound in Theorem [5| and OOMA policy regret bound
in Theorem (7| Consider an Euclidean mirror map ®(y) = 1|y||3 with the corresponding bounds in
Table [3

Static non-optimistic setting. In the static non-optimistic setting (Pr = 0,g]" = 0), we have:

4r*W 2rintL? LT
a-regret (Py) < Tn +n <8ar(£T) + A + 20672 LT (193)
< (12ar°?n3/% £ 1) LTY? (194)
1/4 _ _
For 1 = 21/2a31ﬂZl/2n3/2LT 3/5, where § = (32)Y4(r!/2n!/2)T15 W = TS,

Dynamic non-optimistic setting. In the static non-optimistic setting (Pr > 0 and g = 0). We
have the following:

a-regret (Px) = (\/PTT4/5) (195)

For n =0 (VPT=3/%), 6 =0 (T~%), W = © (T'/%).
Dynamic optimistic setting. In the dynamic optimistic setting (Pr > 0 and g # 0). We have the
following:

T/W
a-regret (Py) = O | T\ Pr Y _|g —gfl3+T" 7+ T |. (196)
=1

SNote that the result in Theorem |§| readily extends to dynamic regret as in the proof of Theorem
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Forn = © <\/PT/ ZZT:/I/VHQZ — gf||%>, 6 =0 (T_'B), W = ©(T%). To interpret the above bound,

consider for simplicity that Pr = © (1) and that the optimistic gradients g are inaccurate (but bounded
by some constant). Then, when we take n = © (T‘3/5), 0=0 (T‘1/5), W =6 (T1/5) and recover the
worst-case regret a-regret (Py) = O (T4/ 5). However, when the optimistic gradients are accurate the

above bound can be much tighter. For example, in the extreme scenario when \/ZZTZ/IVHQZ —grl3=c¢
for W = © (T), selecting § = ©(T~1), and n = © (2), yields a-regret = O (e).

Specialized Algorithms for Static Regret. The regret attained through the reduction to an
arbitrary OCO algorithm (a-regret (Pyx) = O (T4/ ?)) is higher than with the specific instance of FTRL
used by Wan et al. [5] (O (TQ/ %)), which however does not extend to the dynamic and optimistic
settings.

In particular, in the static regret setting, we can recover the bound by Wan et al. [5] by instantiating
the generic reduction in the manner they do, by employing a specialized OCO algorithm with appropriate
exploration matrices H;. Wan et al. [5] showed that when the OCO policy Py is selected to be FTRL in
Alg. Yl with a self-concordant regularizer |[8] R(y) : R™ — R, the exploration matrix can be configured as

H, = (VQR(yl))l/Q. Then, the sampled action y; + H;v; is located on the surface of the Dikin ellipsoid
centered at y,; defined as

Ey) 2{yeR": ly —ylli <1}, (197)

where ||y||; is a local norm given by ||y|l; = /yTV?R(y;)y. The Dikin ellipsoid has the nice property
that it is fully contained in ). This permits selecting § = 0, and this reduces the variance of the
gradient estimates due to 1/0 scaling. Wan et al. [5] demonstrate that this configuration attains a
regret a-regret (Px) = O (T%/3).

G.IV  Alternate Concave Relaxation to Reduce Computational Complexity

In our setup so far, the concave relaxation f was the WTP function “itself”. As an additional extension,
we present a setting in which a concave relaxation is different from f, while still satisfying Asm. [2| This
example demonstrates that our framework and, in particular, Asm. [2] provide additional flexibility to
design algorithms with low time complexity.

Consider the following set function

Fx) = e[ be—be [T (1= (wei/be)zs) | x € {0,1}", (198)

LeC JESy

where by € R>g, Sy C V' is a subset of V' = [n], w; = (we;)jes € [0, b]‘s‘ bounded by by, and ¢, € R>g
for £ € C for some index set C.

This objective appears in many applications such as product ranking [72] [4] and influence maxi-
mization [22, 20]. Note for wy = 1,¢ € C, this set function reduces to the weighted coverage (44)).

Lemma [5| implies that the function f belongs to the class of WTP functions; in particular, it can be
expressed as follows:

F&) = e[ be—be Y JJ =) [Jweisve J] = wey/be) ] - (199)

LeC SCSpieS i€S JES\S
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We obtain this equality by considering that 1 —J],.g(1 —x;) = ¥11,5(x) for all x € {0, 1}!5! and, hence:

F) = eo | be—be Y [Tweisbe T (1 —we;/be) (Pr1,5(x) = 1) (200)

LeC SCSpieS JES\S

= ZC@I)@ Z ng’i/bg H (1- 'u}g’j/bg) 1111,175(X) S h(x) for x € {0, 1}n. (201)

eC SCSy \i€S JESN\S

The second inequality follows from the fact that 1 =3 g-g, [T;cgwe,i/be[1;es,s(1 —we,;/be) for £ € C
(see Lemma [5)).

A straightforward approach to construct a concave relaxation of f is to extend h(x) to fractional
values y € [0,1]", i.e., f(y) = h(y),Vy € [0,1]" as in Sec. However, this extension is intractable,
since it involves a summation of potentially 2" terms. Alternatively, we can consider the concave
relaxation given by

F) = e, m,.5.(y) for y € [0,1]™. (202)
LeC

It is easy to check that Lemmas emply that this is a valid concave function satisfying Asm. [2 This
relaxation is of interest for two reasons: (1) it provides an example of the “sandwich” property under
which the two functions do not necessarily exactly match over integral values, and (2) it illustrates
that carefully designing the concave relaxation can greatly change the computational complexity of the
proposed method in Sec.

H Additional Experimental Details & Results

H.I Datasets & Experiment Setup

We provide additional details about the datasets we use and our experiment setup below. For all
experiments reported in Tables [2] and [6] we repeat experiments 5 times per policy; we ensure that the
adversary presents the same five sequences across all competitor policies.

Influence Maximization. In the case of influence maximization (see Appendix , we use the
Zachary Karate Club (ZKC) and the Epinions (Epinions) datasets [73]. We denote by m the number
of partitions of the partition matroid. We also sort the number of nodes of the original graph by
their degrees and we divide the nodes into m = 2 partitions where sorted nodes with even indices are
assigned to one partition and the odd indices are assigned to the other. At every timeslot ¢, the online
policy selects rp—;” = 2 seeds from each partition. Then, the adversary generates a cascade reachability
graph following the independent cascade (IC) model, [22] by independently sampling the edges of the
original graph with probability p = 0.1. We repeat the above for T" = 100 timeslots. We follow a similar
procedure with the Epinions dataset. This time, we generate a subgraph of the original dataset by
sorting the nodes by their outdegrees and keeping the top 200 nodes. Then, we sample the edges of this
subgraph with probability p = 0.1 and generate T' = 150 instances. We divide the dataset into m = 2

equal-sized partitions u.a.r and select at most TPT”“ =5 from each partition.

Facility Location. For this application, we experiment on a subset of the MovieLens 10M (MovieLens)
dataset [56]. The original dataset has more than 10M ratings in total from 71567 users for 10681
movies. We sort the users based on the number of movies they have rated and keep the top T' = 294 of
these users. Then, we take the user with the most number of ratings and only keep the movies that
have been rated by this user in our subset. This leaves us with |C| = 21 movies. In the facility location
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context, we treat movies as facilities, users as customers, and normalized ratings w; ; as the utilities.
For the partition matroid constraint, we divide the movies into m = 6 partitions based on the first
genre listed for each movie. At each timeslot, the adversary selects a user in the order they show up in
the original dataset. The online algorithm maximizes the total utility by selecting TPT‘"‘” = 1 movie from

each genre. For the uniform matroid constraint, we set ryy; = 6.

Team Formation. Our experiments for team-formation focus on objective functions that are monotone,
submodular quadratic functions (see Appendix . We generate 5 monotone and submodular
quadratic functions as follows: we generate the h vector by sampling n numbers from a normal
distribution (with x4 = 60 and o = 20) and enforcing every coordinate of h to be between 0 and 100. We
generate the H (symmetric) matrix by sampling each entry H; ; = Hj; from a normal distribution (with
u = —20 and o = 10). We enforce every entry to be less than or equal to 0 and the main diagonal of H
to be equal to 0. We shrink the rows (and columns) of H by multiplying them with a constant factor
until the function satisfies the monotonicity property. We consider a pool of n = 100 individuals. At
timeslot ¢, the adversary selects one of the five functions uniformly at random and the online algorithm
forms a team maximizing the function. We consider a total of " = 100 timeslots. For the uniform
matroid constraint, the online algorithm can select at most ry,; = 2 individuals. For the partition
matroid constraint, we divide the individuals into m = 2 partitions and the online algorithm selects at

most rp—;” = 2 individuals from each partition.

Synthetic Weighted Coverage. We generate two variants of the weighted-coverage problem with a
ground set size n = 20, designed to study reward function distribution shifts in the dynamic regret setting
(Appendix [H.ITI), and an additional variant designed to study optimistic learning (Appendix [H.III). In
all cases, we consider a uniform matroid constraint with rank r,,; = 5. The objectives are designed
such that the maximizing decisions are disjoint under the two objectives. Each objective is the sum of
|C'| = 63 threshold potentials. Our first (stationary setting) problem considers a fixed function equal to
the average of the two objectives. In the second (time-varying setting) problem, we set the rewards
to be equal to the first objective for the first % = 25 timeslots, and then abruptly set the rewards to
be the second objective for the remaining % = 25 timeslots. Finally, in the third (also time-varying)
setting, we alternate between the two objectives at each timeslot.

H.IT Policy Implementation

All timing experiments were run on a machine with a Broadwell CPU and 128GB RAM. All policies,
including ones by other researchers (FSF* and TabularGreedy), were implemented by us in Python. For
solving convex optimization problems, we used the CVXPY package, which is an open-source python
library.

Even though hyperparameters differ per algorithm, for a fair comparison, we explore the same
number of configurations across all our algorithms and baselines. For the RAOCO-0GA algorithm
we try n values from the set {0.001,0.01,0.1,0.5,1,1.5,2,2.5,3,3.5,4,6,8,10}. For the RAOCO-0MA,
FSF*, and TabularGreedy algorithms; we perform grid search where (n,v) € {0.05,0.1,6.5,10} x
{0.001,0.01,0.05,0.1}, (n,v) € {1,10,75,100} x {0,0.001,0.01,0.1}, and (1,¢,) € {0.1,1,10,160} x
{1,2,4, 8} respectively. In order to choose these values, we first perform an exponential search and then
conduct a linear search on the interval with maximum reward.

H.IIT Additional Results

Fractional policies. We report the fractional rewards Fy in Table @ We observe that both RAOCO-0GA
and RAOCO-0MA significantly outperform Random. Note that in the MovieLens dataset all algorithms,
including Random, attain almost optimal rewards. In comparison with the integral rewards (Table [2),
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Dataset | Problem T | n | [C] [min(]S¢|) [max(Sg) [avg([Se]) [m | Tpart | Tuni

ZKC Inf. Max. 100| 34 | 34 1 8 1.27 2 4
Epinions Inf. Max. 150|200 200 1 47 2.80 2| 10 10
MovieLens Fac. Loc. 294 21 21 1 21 1.80 6 6 6
SynthTF | Team Form. | 100|100 | 4951 2 100 2.02 2 4 2
SynthWC | Weight. Cov.| 50 | 20 | 24 1 4 2.04 4 8 5

Table 5: Dataset properties and experiment parameters. The columns T, n, |C| specify the number
of timeslots, the number of elements of the matroid, and the number of threshold potentials in each
objective function, respectively. The operators avg, min, and max are applied on possible values of the
input parameters Sy of the WTP class in Eq. . The columns m, Tpart, and 7y, specify the number
of partitions in the partition matroid, the rank of the partition matroid, and the rank of the uniform
matroid, respectively, used across the different problem instances.

RAOCO-0GA RAOCO-0MA FSF* TabularGreedy Random
datasets . = . |avg. time per|| = . |avg. time per||avg. time per|| avg. time per || = . avg. time per
& constr. F L Fv/E timeslot (s) Ey/F timeslot (s) || timeslot (s) timeslot (s) Fy/F std. dev. timeslot (s)
~ 33 || 0.912 0.957 0.646 0
5 0.234[ 66 || 0.929 | 7.62 x 10~2 |[0.965 | 7.71 x 10~3 0.158 7.63 x 1072 0.643 0 3.32 x 1073
Q 99 || 0.948 0.981 0.640 0
N 33 || 0.995 0.996 0.957 0
3 |0.83[66]| 099 | 6.85%x1073 [[0.993 ] 7.09 x 10~3 X 1.97 x 10~ 2 0.953 [1.34 x 10~ 10| 2.84 x 10~3
A 99 || 0.993 0.996 0.955 0
~ 50 || 0.919 0.905 0.724 0
a 5 0.171{100(] 0.937 | 7.27 x 10~2 |[ 0.932 | 7.4 x 10~2 14.2 6.69 0.711 0 1.93 x 10~2
S 149(] 0.946 0.943 0.720 0
2l s 50 || 0.918 0.902 0.724 0
w8 [0.171[100(] 0.938 | 7.14 x 10~2 |[ 0.929 | 7.41 x 10~ 2 X 3.3 0.711 [812x 10 '] 1.86 x 10~2
A 149(] 0.949 0.941 0.720 0
~ 98 || 0.838 0.875 0.833 0
g 5 0.407[196(| 0.817 | 1.26 x 10~2 |[ 0.820 | 1.25 x 10~2 || 1.29 x 10~2 7.83 x 1073 0.774 0 1.18 x 10~3
3 293][ 0.868 0.893 0.799 0
A 98 || 0.896 0.96 0.882 0
2| 3 |0.419[196]] 0.874 | 1.2x 1072 |[0.911 | 4.69 x 10~3 X 1.71 x 10-2 |[ 0.852 0 1.04 x 10~3
A 2931 0.940 0.949 0.903 0
~ 33 || 0.983 0.983 0.611 0
| 5 | 200 | 66| 0.992 0.515 0.995 0.517 45.5 44.4 0.609 0 0.224
< 99 || 0.995 0.999 0.611 0
5 337 ([ 0.982 0.985 0.611 0
Wl 3 | 400 [66 || 0.99 0.526 0.992 0.518 X 22.2 0.609 0 0.228
A 99 || 0.993 0.995 0.611 0

Table 6: Average cumulative reward Fy (t = T//3,2T/3,T), normalized by fractional optimal F*, of
fractional policies (RAOCO and Random) across different datasets and constraints, along with average
execution time per timeslot (in seconds). Highest Fy/F* values are indicated in bold. The policies FSF*
and TabularGreedy by construction only produce integral solutions (whose performance is reported in
Table . The policy FSF* only operates on uniform matroids. The standard deviation of the rewards
of RAOCO policies is 0, since the fractional rewards are deterministic, and thus omitted from the table.
RAOCO combined with 0GA or OMA outperforms Random, while almost reaching the optimal value 1. As
Random also performs well on MovieLens, this indicates that the (static) offline optimal is quite poor
for this reward sequence. With respect to the execution time, RAOCO policies are consistently faster
by orders of magnitude than competing policies FSF* and TabularGreedy, and pretty close to (trivial
to execute) policy Random; an exception is TabularGreedy on MovieLens under a partition matroid
constraint, where its execution time is slightly better, but still comparable to RAOCO policies.

RAOCO-0GA slightly outperforms RAOCO-0MA in the Epinions dataset. Overall, in all other datasets,
fractional results are on par with the integral results reported in Table

Execution times. We report the average execution time per timeslot (avg. time per timeslot) in
Table [0l We observe that RAOCO-0GA and RAOCO-0MA, significantly outperform all other policies, except
Random. Particularly, in the ZKC dataset RAOCO algorithms are faster than the competitors by one order
of magnitude, while in the Epinions dataset RAOCO algorithms are faster than the competitors by two
orders of magnitude.
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Dynamic Regret. Recall that we consider two settings for the SynthWC dataset, which we designed to
study dynamic regret: one with static rewards, and one with a distribution shift. Recall that optimal
decision under the two objectives are disjoint; therefore, the different policies need to relearn for the
different objective. We consider the following configurations for the different policies: 0GA (n = 0.001),
OMA (n = 0.05,v = 0) configured with negative-entropy, OMA* (n = 0.05,7 = 0.02) configured with
negative-entropy, FSF* (n = 0.05,v = 0.02), TabularGreedy (n = 0.05,¢, = 1).

The results are provided in Fig. [I We observe that all the policies have similar performance in the
stationary setting and are able to match the performance of the static optimum. In the non-stationary
setting, we observe that that 0GA, OMA, and FSF* are robust to to non-stationarity and are able to
match the performance of a dynamic optimum. TabularGreedy is less robust to non-stationarity and is
only able to match the performance of a static optimum. We observe that the shifted version of OMA
increases its robustness and provides a slightly better performance compared to 0GA.

Optimistic Learning. We now consider the third variant of SynthWC dataset, in which we alternate
between the two objectives at each timeslot. Under this setting, it is difficult to track the dynamic
optimum since Pr = Q(T) (see our theoretical result in Sec. |§|; moreover, the regret O (v/PrT) is
order-wise optimal [74]). However, if we incorporate predictions, the large Pr can be dampened when
the predictions are accurate. We provide as predictions the future supergradient g, with added Gaussian
noise with mean 0 and standard deviation n, € {10,200}.

The results are provided in Fig. [l We observe that when the predictions are accurate Optimistic
0GA is able to exploit these predictions to match the performance of the dynamic optimum. We note that
for larger learning rate, the performance improves as the policy can follow aggressively the predictions
instead of the past rewards, whereas classical 0GA diverges for this learning rate configuration. The
main difficulty with optimistic leaning is that the learning rate selection depends on the quality of the
received predictions. This motivates the next experiment that considers a meta-learning setup that
learns the appropriate learning rates in a parameter-free fashion.

Meta-Policies. We consider the SynthWC dataset and a fixed function equal to the average of the two
objectives. We construct a parameter-free 0GA that does not require a learning rate. The learning rate
is adapted through the received gradients; such a learning rate schedule is known as “self-confident” [75].
This policy acts as a meta-policy that learns over different policies configured with different learning
rates ) € {5 x 10741 x1073,2 x 1073,4 x 10*3}. The results are provided in Fig. [5l We observe that
the meta-policy quickly learns the best learning rate.
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Figure 4: Average cumulative reward Fy of the different policies under SynthWC dataset under a
non-stationary setup: the objective is changed at every timeslot. The algorithms Optimistic 0GA and
0GA are executed with different learning rates under different prediction accuracy (noise with std. dev.
ne € {10,100}). The larger learning rate is depicted by a solid line. The area depicts the standard
deviation over 5 runs.
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Figure 5: Average cumulative reward Fiy of 0GA under SynthWC dataset for different learning rates. The
meta-policy can learn the best configuration of OGA without tuning the learning rate. The area depicts
the standard deviation over 5 runs.
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