Online Submodular Maximization via Online Convex Optimization

Alireza Kazemipour

CMPUT 676: Optimization and Decision-Making under Uncertainty

December 9th, 2024

Structure of the presentation

- What?
- How?
- Why?
- Proposal/What I've been doing.

 $\frac{\text{Maximizing } \underline{\text{monotone}}}{I} \underbrace{\frac{\text{submodular}}{II}}_{II} \text{ functions under general} \\ \underline{\frac{\text{matroid } \text{constraints}}{III}}_{III} \text{ via online } \underline{\text{convex optimization}}.$

- Let $V \triangleq [n], n \in \mathbb{N}$.
- A set function $f: 2^V \to \mathbb{R}$ is monotone if:

$$f(A) \leq f(B), \forall A, B \text{ that } A \subseteq B \subseteq 2^V.$$

 $\frac{\text{Maximizing } \underline{\text{monotone}}}{I} \ \underline{\text{submodular}} \ \underline{\text{functions under general}}}_{II} \\ \underline{\underline{\text{matroid constraints via online convex optimization}}}.$

- Let $V \triangleq [n], n \in \mathbb{N}$.
- A set function $f: 2^V \to \mathbb{R}$ is submodular if:

$$f(B \cup \{v\}) - f(B) \le f(A \cup \{v\}) - f(A),$$

$$\forall A, B \text{ that } A \subseteq B \subseteq 2^V \text{ and } v \in V \setminus B.$$

 $\frac{\text{Maximizing } \underline{\text{monotone}}}{I} \ \underline{\text{submodular}} \ \underline{\text{functions under general}}}_{II} \\ \underline{\underline{\text{matroid constraints via online convex optimization}}}.$

- Let $V \triangleq [n], n \in \mathbb{N}$.
- A set function $f: 2^V \to \mathbb{R}$ is submodular if:

$$f(B \cup \{v\}) - f(B) \le f(A \cup \{v\}) - f(A),$$

$$\forall A, B \text{ that } A \subseteq B \subseteq 2^V \text{ and } v \in V \setminus B.$$

• It kinda resembles the notion of convexity/concavity in set functions.

 $\frac{\text{Maximizing } \underline{\text{monotone}}}{I} \underbrace{\frac{\text{submodular}}{II}}_{II} \text{ functions under general}$ $\underline{\text{matroid } \mathbf{constraints}}_{III} \underbrace{\text{via online convex optimization}}_{III}.$

- Let $V \triangleq [n], n \in \mathbb{N}$, and $\mathcal{I} \subseteq 2^V$.
- A matroid is a pair $\mathcal{M} = (V, \mathcal{I})$ such that:
 - \diamond If $B \in \mathcal{I}$ and $A \subseteq B$ then $A \in \mathcal{I}$.
 - $\diamond \ \, \text{If} \,\, A,B\in\mathcal{I} \,\, \text{and} \,\, |A|<|B| \,\, \text{then there exists a} \,\, b\in B \,\, \text{such} \\ \, \text{that} \,\, A\cup\{b\}\in\mathcal{I}$

 $\frac{\text{Maximizing } \underline{\text{monotone}} \ \underline{\text{submodular}} \ \underline{\text{functions under general}}}{II} \\ \underline{\text{matroid } \mathbf{constraints}} \ \underline{\text{via online convex optimization}}.$

- Let $V \triangleq [n], n \in \mathbb{N}$, and $\mathcal{I} \subseteq 2^V$.
- A **matroid** is a pair $\mathcal{M} = (V, \mathcal{I})$ such that:
 - \diamond If $B \in \mathcal{I}$ and $A \subseteq B$ then $A \in \mathcal{I}$.
 - $\diamond \ \, \text{If} \,\, A,B\in\mathcal{I} \,\, \text{and} \,\, |A|<|B| \,\, \text{then there exists a} \,\, b\in B \,\, \text{such} \\ \, \text{that} \,\, A\cup\{b\}\in\mathcal{I}$
- It generalizes the concept of linear independence in vector spaces to sets.

(What) Let's put them in an example.

Facility Location Problem (FLP): We want to choose a subset of potential locations $S \subseteq L = \{l_1, \dots, l_n\}$ to open our facilities (e.g., warehouses) to minimize the total building cost of the facility, and minimizing the distance d between the locations and clients $C = \{c_1, \dots c_m\}$ that should be served. So the objective is:

$$\min \left[\sum_{i \in S} \operatorname{cost}_{\text{build}}(l_i) + \sum_{j \in C} \min_{l \in S} d(l, c_j) \right] =$$

$$\max \left| -\sum_{i \in S} \operatorname{cost_{build}}(l_i) - \sum_{j \in C} \min_{l \in S} d(l, c_j) \right|$$

(What) Let's put them in an example.

$$f(B \cup \{v\}) - f(B) \le f(A \cup \{v\}) - f(A), A \subseteq B$$

- FLP is a submodular maximization (minimization) problem, because:
 - ◇ Diminishing returns. At a certain point, the benefit of opening a new facility is less valuable than the initial phase, because the existing facilities have already done a lot of the heavy lifting.

(What) Let's put them in an example.

$$f(B \cup \{v\}) - f(B) \le f(A \cup \{v\}) - f(A), A \subseteq B$$

- FLP is a submodular maximization (minimization) problem, because:
 - ⋄ Diminishing returns. At a certain point, the benefit of opening a new facility is less valuable than the initial phase, because the existing facilities have already done a lot of the heavy lifting.
- The decisions are of the form $\{0,1\}^n$.

It generalizes the linear independence in vectors to sets.

(What) FLP

(What) FLP

(What) FLP

(What) Submodular Maximization is NP-Hard

• In general the problem of maximizing submodular functions, even in offline setting, is NP-hard¹ as there are reductions to the Traveling Salesman Problem.

 $^{^1\}mathrm{Krause}$ and Golovin, "Submodular function maximization."

(What) Submodular Maximization is NP-Hard

- In general the problem of maximizing submodular functions, even in offline setting, is NP-hard¹ as there are reductions to the Traveling Salesman Problem.
- The best approximation ratio by the greedy algorithm is:

$$\alpha = 1 - \frac{1}{e}$$

¹Krause and Golovin, "Submodular function maximization."

In the online setting, the reward (cost) is revealed one by one. Hence:

- ullet Let ${\mathcal X}$ be the decision space forming a matroid.
- Let $f_t: \mathcal{X} \to \mathbb{R}_{\geq 0}$ be a reward function selected by adversary among the set of submodular functions \mathcal{F} .

The paper's algorithm tries to find a policy π_x to minimize:

In the online setting, the reward (cost) is revealed one by one. Hence:

- Let \mathcal{X} be the decision space forming a matroid.
- Let $f_t: \mathcal{X} \to \mathbb{R}_{\geq 0}$ be a reward function selected by adversary among the set of submodular functions \mathcal{F} .

The paper's algorithm tries to find a policy π_x to minimize:

• Static regret:

$$SR_T(\pi_{\mathbf{x}}, \alpha) := \sup_{(f_t)_{t=1}^T \in \mathcal{F}^T} \left\{ \alpha \max_{\mathbf{u} \in \mathcal{X}} \sum_{t=1}^T f_t(\mathbf{u}) - \mathbb{E}\left[\sum_{t=1}^T f_t(\mathbf{x}_t)\right] \right\}$$

In the online setting, the reward (cost) is revealed one by one. Hence:

- Let \mathcal{X} be the decision space forming a matroid.
- Let $f_t: \mathcal{X} \to \mathbb{R}_{\geq 0}$ be a reward function selected by adversary among the set of submodular functions \mathcal{F} .

The paper's algorithm tries to find a policy π_x to minimize:

• Static regret:

$$SR_T(\pi_{\mathbf{x}}, \alpha) \coloneqq \sup_{(f_t)_{t=1}^T \in \mathcal{F}^T} \left\{ \alpha \max_{\mathbf{u} \in \mathcal{X}} \sum_{t=1}^T f_t(\mathbf{u}) - \mathbb{E}\left[\sum_{t=1}^T f_t(\mathbf{x}_t)\right] \right\}$$

• Dynamic regret:

$$DR_T(\pi_{\mathbf{x}}, P_T, \alpha) \coloneqq \sup_{(f_t)_{t=1}^T \in \mathcal{F}^T} \left\{ \alpha \sum_{t=1}^T \max_{\mathbf{u}_t \in \mathcal{X}} f_t(\mathbf{u}_t) - \mathbb{E}\left[\sum_{t=1}^T f_t(\mathbf{x}_t)\right] \right\}$$

where
$$\sum_{t=1}^{T-1} ||\mathbf{u}_{t+1} - \mathbf{u}_t|| \le P_T$$

$$SR_T(\pi_{\mathbf{x}}, \alpha) := \sup_{(f_t)_{t=1}^T \in \mathcal{F}^T} \left\{ \alpha \max_{\mathbf{u} \in \mathcal{X}} \sum_{t=1}^T f_t(\mathbf{u}) - \mathbb{E}\left[\sum_{t=1}^T f_t(\mathbf{x}_t)\right] \right\}$$

$$DR_T(\pi_{\mathbf{x}}, P_T, \alpha) := \sup_{(f_t)_{t=1}^T \in \mathcal{F}^T} \left\{ \alpha \sum_{t=1}^T \max_{\mathbf{u}_t \in \mathcal{X}} f_t(\mathbf{u}_t) - \mathbb{E}\left[\sum_{t=1}^T f_t(\mathbf{x}_t)\right] \right\}$$

- Full-Information
- Bandit
- Optimistic: Some predictions about f_t are available to the learner.

(How) Concave Relaxation

Let $\mathcal{Y} \triangleq \operatorname{conv}(\mathcal{X})$, $\Xi : \mathcal{Y} \to \mathcal{X}$ a randomized rounding, and let $\tilde{f} : \mathcal{Y} \to \mathbb{R}$ be a concave *L*-Lipschitz function such that:

$$\tilde{f}(\mathbf{x}) \ge f(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}$$

and

$$\mathbb{E}_{\Xi}[f(\Xi(\mathbf{y}))] \ge \alpha \cdot \tilde{f}(\mathbf{y}), \forall \mathbf{y} \in \mathcal{Y}$$

Then since \mathcal{Y} is convex and compact, and \tilde{f} is concave and L-Lipschitz, we can run an OCO method (e.g., Online mirror Ascent (Descent)) and get a regret which it holds that:

$$SR_T(\pi_{\mathbf{x}}, \alpha) \leq \alpha \cdot SR_T(\pi_{\mathbf{v}})$$

and

$$DR_T(\pi_{\mathbf{x}}, P_T, \alpha) \leq \alpha \cdot DR_T(\pi_{\mathbf{v}}, P_T)$$

(How) Weighted Threshold Potential Functions

One such functions f where they are also equal to f, and can represent a wide variety of problems, are Weighted Threshold Potential (WTP) functions:

$$f(\mathbf{x}) \triangleq \sum_{i \in I} c_i \Psi(\mathbf{x}, S_i, \mathbf{w}_i, b_i), \forall \mathbf{x} \in \{0, 1\}^n$$

- *I*: An arbitrary index set.
- $c_i \in \mathbb{R}_{>0}$ for $i \in I$.
- $S_i \subseteq [n]$
- $b_i \in \mathbb{R}_{>0} \cup \{\infty\}$: A threshold.
- $\mathbf{w}_i \in [0, b]^{|S_i|}$
- $\Psi(\mathbf{x}, S, \mathbf{w}, b) = \min \left\{ b, \sum_{j \in S} x_j w_j \right\}$

(How) Randomized Swap Rounding

• We found f and \tilde{f} ; if we find $\Xi : \mathcal{Y} \to \mathcal{X}$, then we are done.

$$\tilde{f}(\mathbf{x}) \geq f(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}$$

$$\mathbb{E}_{\Xi}[f(\Xi(\mathbf{y}))] \ge \alpha \cdot \tilde{f}(\mathbf{y}), \forall \mathbf{y} \in \mathcal{Y}$$

(How) Randomized Swap Rounding

- We found f and \tilde{f} ; if we find $\Xi : \mathcal{Y} \to \mathcal{X}$, then we are done.
- Randomized Swap Rounding² (RSR) on (WTP) would result in:

$$\alpha = 1 - \frac{1}{e}$$

$$\tilde{f}(\mathbf{x}) \geq f(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}$$

$$\mathbb{E}_{\Xi}[f(\Xi(\mathbf{y}))] \ge \alpha \cdot \tilde{f}(\mathbf{y}), \forall \mathbf{y} \in \mathcal{Y}$$

(How) Summary

- Construct the convex hull of $\mathcal{X} = \{0, 1\}^n$. • $\mathcal{Y} \triangleq \text{conv}(\mathcal{X})$
- 2 Run an OCO method on \mathcal{Y} . (Yet to be discussed)
- **3** Convert the fractional solution obtained on \mathcal{Y} to an integral solution $\in \mathcal{X}$ via RSR with $\alpha = 1 \frac{1}{\epsilon}$ approximation.
- Enjoy the regret bounds.

$$SR_T(\pi_{\mathbf{x}}, \alpha) \le \alpha \cdot SR_T(\pi_{\mathbf{y}})$$

$$DR_T(\pi_{\mathbf{x}}, P_T, \alpha) \leq \alpha \cdot DR_T(\pi_{\mathbf{y}}, P_T)$$

(How) Optimistic Online Mirror Ascent

Algorithm 1: OOMA: Two-Update-Per-Step

```
Require: \eta \in \mathbb{R}_{>0}
                                                                        /* learning rate */
      \Phi: \mathcal{Y} \to \mathbb{R}
                                                                              /* mirror map */
      M_2, M_3, \cdots, M_{T+1} /* Sequence of predictions */
 1: Let \mathbf{y}_1 = \mathbf{z}_1 = \arg \max_{\mathbf{y} \in \mathcal{V}} \Phi(\mathbf{y})
 2: for t = 1 to T do
 3:
      Play \mathbf{y}_t.
 4: Observe the reward function \tilde{f}_t and let \nabla_t = \nabla \tilde{f}_t(\mathbf{v}_t)
 5: \mathbf{z}_{t+1} = \arg\max_{\mathbf{z} \in \mathcal{V}} \langle \mathbf{z}, \nabla_t \rangle - \frac{B_{\Phi}(\mathbf{z}; \mathbf{z}_t)}{r}
                                                                                      /* Adapt the
          secondary decision */
         \mathbf{y}_{t+1} = \arg\max_{\mathbf{y} \in \mathcal{Y}} \langle \mathbf{y}, M_{t+1} \rangle - \frac{B_{\Phi}(\mathbf{y}; \mathbf{z}_{t+1})}{n}
                                                                                     /* Adapt the
 6:
          primary decision */
 7: end for
```

(Why) Because OSM via OCO is the best :)

	Prob. Class	(1-1/e)-regret (Full Information)									
Paper		Static			Dynamic			Optimistic			Time
		Uni.	Part.	Gen.	Uni.	Part.	Gen.	Uni.	Part.	Gen.	
[4]	GS	$r\sqrt{\log(n)T}$	×	×	×	×	×	×	×	×	T^4O_b
[2]	GS	$\sqrt{r \log (}$	$\left(\frac{n}{r}\right)T$		×	×	×	×	×	×	$nr^2 + O_m \cdot n^4/\epsilon^3$ $\log(n^3T/\epsilon)$
[3]	GS	$r\sqrt{r\log(nT)T}$	×	×	$\sqrt{r(r \log(nT) + P_T)T}$	×	×	×	×	×	nr
[1]	GS	$r^{\frac{3}{2}}\sqrt{\log(n)}$	\overline{T}	×	×	×	×	×	×	×	n^2c_p
[30]	DR-S	\sqrt{rr}	T		×	×	×	×	×	×	$\sqrt{T}O_{\text{oco}} \cdot O_{\text{m}} + nr^2$
[31]	DR-S	$T^{\frac{4}{5}}$			×	×	×	×	×	×	$T^{\frac{3}{5}}O_{\text{oco}} \cdot O_{\text{m}} + nr^2$
[32]	DR-S	\sqrt{rnT}			×	×	×	×	×	×	$O_{ m oco} \cdot O_{ m m} + nr^2$
[33]	LWD	$n(\alpha + 1)$	$2)\sqrt{T}$		×	X	×	×	X	×	TO_{α}
This work	WTP	$r\sqrt{\log(\frac{n}{r})T}$			$\sqrt{r(r\log(\frac{n}{r}) + \log(n)P_T)T}$				T	$+ \log(n)P_T$ $- \mathbf{g}_t^{\pi} \parallel_{\infty}^2$	nr^2

Comparison to previous results

(Proposal 1) OOMA used in the paper was old!

Algorithm 2: OOMA: Two-Update-Per-Step

```
Require: \eta \in \mathbb{R}_{>0}
                                                                        /* learning rate */
      \Phi: \mathcal{V} \to \mathbb{R}
                                                                              /* mirror map */
      M_2, M_3, \cdots, M_{T+1} /* Sequence of predictions */
 1: Let \mathbf{y}_1 = \mathbf{z}_1 = \arg \max_{\mathbf{y} \in \mathcal{V}} \Phi(\mathbf{y})
 2: for t = 1 to T do
 3:
      Play \mathbf{y}_t.
 4: Observe the reward function \tilde{f}_t and let \nabla_t = \nabla \tilde{f}_t(\mathbf{v}_t)
 5: \mathbf{z}_{t+1} = \arg\max_{\mathbf{z} \in \mathcal{V}} \langle \mathbf{z}, \nabla_t \rangle - \frac{B_{\Phi}(\mathbf{z}; \mathbf{z}_t)}{r}
                                                                                      /* Adapt the
          secondary decision */
         \mathbf{y}_{t+1} = \arg\max_{\mathbf{y} \in \mathcal{Y}} \langle \mathbf{y}, M_{t+1} \rangle - \frac{B_{\Phi}(\mathbf{y}; \mathbf{z}_{t+1})}{2} /* Adapt the
 6:
          primary decision */
 7: end for
```

(Proposal 1) OOMA was based on this paper

Online Learning with Predictable Sequences

Alexander Rakhlin University of Pennsylvania Karthik Sridharan University of Pennsylvania

May 27, 2014

(Proposal 1) OOMA was improved later!

Proceedings of Machine Learning Research 76:1-40, 2017

Algorithmic Learning Theory 2017

A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds

Pooria Joulani

POORIA@UALBERTA.CA

Department of Computing Science University of Alberta

Edmonton, Alberta, Canada

András György

Department of Electrical and Electronic Engineering

Imperial College London

London, UK

Csaba Szepesvári

A.GYORGY@IMPERIAL.AC.UK

SZEPESVA@UALBERTA.CA

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada

(Proposal 1) OOMA with single update!

Algorithm 3: OOMA: One-Update-Per-Step

```
Require: \eta \in \mathbb{R}_{\geq 0} /* learning rate */
\Phi: \mathcal{Y} \to \mathbb{R} /* mirror map */
M_2, M_3, \cdots, M_{T+1} /* Sequence of predictions */

1: Let \mathbf{y}_1 = \mathbf{z}_1 = \arg\max_{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{y})

2: for t = 1 to T do

3: Play \mathbf{y}_t.

4: Observe the reward function \tilde{f}_t and let \nabla_t = \nabla \tilde{f}_t(\mathbf{y}_t)

5: \mathbf{y}_{t+1} = \arg\max_{\mathbf{y} \in \mathcal{Y}} \langle \mathbf{y}, \nabla_t - M_t + M_{t+1} \rangle - \frac{B_{\Phi}(\mathbf{y}; \mathbf{y}_t)}{\eta}

6: end for
```

(Proposal 1) I proved the new OOMA's dynamic regret

Matching the new algorithm's regret bounds with the one used in the paper.

$$DR_T(\pi_{\mathbf{y}}, P_T) \le \frac{\eta}{2\rho} \sum_{t=1}^T ||\nabla_t - M_t||_*^2 + \frac{(D_{\Phi}^2 + 2G_{\Phi}P_T)}{\eta}$$

And when the optimal learning rate $\eta^* = \sqrt{\frac{2\rho(D_{\Phi}^2 + 2G_{\Phi}P_T)}{\sum_{t=1}^T \|\nabla_t - M_t\|_*^2}}$ is selected:

$$DR_T(\pi_{\mathbf{y}}, P_T) \le \sqrt{\frac{2(D_{\Phi}^2 + 2G_{\Phi}P_T)}{\rho} \sum_{t=1}^T ||\nabla_t - M_t||_*^2}$$

(Proposal 2) Contradiction of the optimal learning rate

- The optimal learning rate $\eta^* = \sqrt{\frac{2\rho(D_{\Phi}^2 + 2G_{\Phi} P_T)}{\sum_{t=1}^T \|\nabla_t M_t\|_*^2}}$ is dependent on the knowledge of $\sum_{t=1}^{T-1} \|\mathbf{u}_{t+1} \mathbf{u}_t\| \leq P_T$.
- This is a violation of the **adversarial assumption**, as the learner knows how much budget the adversary has to change $\mathbf{u_t}$ s!

(Proposal 2) It's been fixed for Online Gradient Ascent

Adaptive Online Learning in Dynamic Environments

Lijun Zhang, Shiyin Lu, Zhi-Hua Zhou National Key Laboratory for Novel Software Technology Nanjing University, Nanjing 210023, China {zhanglj, lusy, zhouzh}@lamda.nju.edu.cn

(Proposal 2) Extension to OOMA

Design an algorithm for Optimistic Online Mirror Ascent without the knowledge of the path length and match the previous regret bounds up to polylogarithmic factors.

(Proposal 2) Extension to OOMA

Algorithm 4: Optimistic Online Mirror Ascent: One-Update-Per-Step with Adaptive learning Rate

```
Require: \alpha \in \mathbb{R}_{>0}
                                                                                                                                                 /* learning rate */
       \Phi: \mathcal{V} \to \mathbb{R}
                                                                                                                                                         /* mirror map */
       M_2, M_3, \cdots, M_{T+1}
                                                                                                                       /* Sequence of predictions */
  1: Let N = 1 + \lceil \log_2 \sqrt{4 + 8T} \rceil
 2: Let \eta^{(i)} = \frac{\sqrt{2\rho}D_{\Phi}2^{i-1}}{2L\sqrt{T}}, i = 1, \dots, N
  3: Let \mathbf{p}_1 = [\frac{1}{N}, \cdots, \frac{1}{N}] \in [0, 1]^N
                                                                                                                /* Uniform prior over experts */
  4: Let \mathbf{y}_1 = \operatorname{argmax}_{\mathbf{y} \in \mathcal{V}} \Phi(\mathbf{y})
  5: for t = 1 to T do
            Play \mathbf{v}_t.
  6:
            Observe the reward function \tilde{f}_t and let \nabla_t = \nabla \tilde{f}_t(\mathbf{y}_t)
  7:
            Update each expert: \mathbf{y}_{t+1}^{(i)} = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} \langle \mathbf{y}, \nabla_t - M_t + M_{t+1} \rangle - \frac{B_{\Phi}(\mathbf{y}; \mathbf{y}_t)}{n^{(i)}}, i = 1, \cdots, N
  8:
            Update each weight: \mathbf{p}_{t+1}^{(i)} = \frac{\mathbf{p}_{t}^{(i)} \exp\left(\alpha \tilde{f}_{t}(\mathbf{y}_{t}^{(i)})\right)}{\sum_{i=1}^{N} \mathbf{p}_{t}^{(i)} \exp\left(\alpha \tilde{f}_{t}(\mathbf{y}_{t}^{(i)})\right)}, i = 1, \cdots, N
 9:
            \mathbf{y}_{t+1} = \sum_{i=1}^{N} \mathbf{p}_{t+1}^{(i)} \mathbf{y}_{t+1}^{(i)}
11: end for
```

Thank You! :)