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Structure of the presentation

What?
How?
Why?
Proposal/What I’ve been doing.
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(What) What does the paper try to do?

Maximizing monotone
I

submodular
II

functions under general

matroid
III

constraints via online convex optimization.
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(What) What does the paper try to do?

Maximizing monotone
I

submodular
II

functions under general

matroid constraints
III

via online convex optimization.

Let V , [n],n ∈ N.
A set function f : 2V → R is monotone if:

f (A) ≤ f (B),∀A,B that A ⊆ B ⊆ 2V .
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(What) What does the paper try to do?

Maximizing monotone
I

submodular
II

functions under general

matroid constraints
III

via online convex optimization.

Let V , [n],n ∈ N, and I ⊆ 2V .
A matroid is a pair M = (V , I) such that:

� If B ∈ I and A ⊆ B then A ∈ I.
� If A,B ∈ I and |A| < |B| then there exists a b ∈ B such

that A ∪ {b} ∈ I

It generalizes the concept of linear independence in vector
spaces to sets.
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(What) Let’s put them in an example.

Facility Location Problem (FLP): We want to choose a
subset of potential locations S ⊆ L = {l1, · · · , ln} to open our
facilities (e.g., warehouses) to minimize the total building cost
of the facility, and minimizing the distance d between the
locations and clients C = {c1, · · · cm} that should be served.
So the objective is:

min

∑
i∈S

costbuild(li) +
∑
j∈C

min
l∈S

d(l, cj)

 =

max

−∑
i∈S

costbuild(li)−
∑
j∈C

min
l∈S

d(l, cj)


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(What) Let’s put them in an example.

f (B ∪ {v})− f (B) ≤ f (A ∪ {v})− f (A),A ⊆ B

FLP is a submodular maximization (minimization)
problem, because:

� Diminishing returns. At a certain point, the benefit of
opening a new facility is less valuable than the initial phase,
because the existing facilities have already done a lot of the
heavy lifting.

Alireza Kazemipour OSM via OCO



9/32

(What) Let’s put them in an example.

f (B ∪ {v})− f (B) ≤ f (A ∪ {v})− f (A),A ⊆ B

FLP is a submodular maximization (minimization)
problem, because:

� Diminishing returns. At a certain point, the benefit of
opening a new facility is less valuable than the initial phase,
because the existing facilities have already done a lot of the
heavy lifting.

The decisions are of the form {0, 1}n.

It generalizes the linear independence in vectors to sets.
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(What) FLP

l1

l2

c1 c3

c2

c4c5
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(What) FLP

l2

c1 c3

c2

c4c5

c6

l1
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(What) Submodular Maximization is NP-Hard

In general the problem of maximizing submodular
functions, even in offline setting, is NP-hard1 as there are
reductions to the Traveling Salesman Problem.

The best approximation ratio by the greedy algorithm is:

α = 1 − 1
e

1Krause and Golovin, “Submodular function maximization.”
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(What) So the paper does:
In the online setting, the reward (cost) is revealed one by one.
Hence:

Let X be the decision space forming a matroid.
Let ft : X → R≥0 be a reward function selected by
adversary among the set of submodular functions F .

The paper’s algorithm tries to find a policy πx to minimize:

Static regret:

SRT (πx, α) := sup
(ft)T

t=1∈FT

{
αmax

u∈X

T∑
t=1

ft(u)− E

[ T∑
t=1

ft(xt)

]}
Dynamic regret:

DRT (πx,PT , α) := sup
(ft)T

t=1∈FT

{
α

T∑
t=1

max
ut∈X

ft(ut)− E

[ T∑
t=1

ft(xt)

]}

where
∑T−1

t=1 ‖ut+1 − ut‖ ≤ PT
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(What) So the paper does:

SRT (πx, α) := sup
(ft)T

t=1∈FT

{
αmax

u∈X

T∑
t=1

ft(u)− E

[ T∑
t=1

ft(xt)

]}

DRT (πx,PT , α) := sup
(ft)T

t=1∈FT

{
α

T∑
t=1

max
ut∈X

ft(ut)− E

[ T∑
t=1

ft(xt)

]}

Full-Information
Bandit
Optimistic: Some predictions about ft are available to the
learner.
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(How) Concave Relaxation

Let Y , conv(X ), Ξ : Y → X a randomized rounding, and let
f̃ : Y → R be a concave L-Lipschitz function such that:

f̃ (x) ≥ f (x), ∀x ∈ X

and
EΞ[f (Ξ(y))] ≥ α · f̃ (y), ∀y ∈ Y

Then since Y is convex and compact, and f̃ is concave and
L-Lipschitz, we can run an OCO method (e.g., Online mirror
Ascent (Descent)) and get a regret which it holds that:

SRT (πx, α) ≤ α · SRT (πy)

and
DRT (πx,PT , α) ≤ α · DRT (πy,PT )
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(How) Weighted Threshold Potential Functions

One such functions f where they are also equal to f̃ , and can
represent a wide variety of problems, are Weighted Threshold
Potential (WTP) functions:

f (x) ,
∑
i∈I

ciΨ(x,Si ,wi , bi), ∀x ∈ {0, 1}n

I : An arbitrary index set.
ci ∈ R≥0 for i ∈ I .
Si ⊆ [n]
bi ∈ R≥0 ∪ {∞}: A threshold.
wi ∈ [0, b]|Si |

Ψ(x,S ,w, b) = min
{

b,
∑

j∈S xjwj

}
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(How) Randomized Swap Rounding

We found f and f̃ ; if we find Ξ : Y → X , then we are done.

f̃ (x) ≥ f (x), ∀x ∈ X

EΞ[f (Ξ(y))] ≥ α · f̃ (y), ∀y ∈ Y
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(How) Randomized Swap Rounding

We found f and f̃ ; if we find Ξ : Y → X , then we are done.
Randomized Swap Rounding2 (RSR) on (WTP) would
result in:

α = 1 − 1
e

f̃ (x) ≥ f (x), ∀x ∈ X

EΞ[f (Ξ(y))] ≥ α · f̃ (y), ∀y ∈ Y

2Chekuri, Vondrák, and Zenklusen, “Dependent randomized rounding
via exchange properties of combinatorial structures”
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(How) Summary

1 Construct the convex hull of X = {0, 1}n.
� Y , conv(X )

2 Run an OCO method on Y. (Yet to be discussed)
3 Convert the fractional solution obtained on Y to an integral

solution ∈ X via RSR with α = 1 − 1
e approximation.

4 Enjoy the regret bounds.

SRT (πx, α) ≤ α · SRT (πy)

DRT (πx,PT , α) ≤ α · DRT (πy,PT )
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(How) Optimistic Online Mirror Ascent

Algorithm 1: OOMA: Two-Update-Per-Step

Require: η ∈ R≥0 /* learning rate */
Φ : Y → R /* mirror map */
M2,M3, · · · ,MT+1 /* Sequence of predictions */

1: Let y1 = z1 = argmaxy∈Y Φ(y)
2: for t = 1 to T do
3: Play yt .
4: Observe the reward function f̃t and let ∇t = ∇f̃t(yt)

5: zt+1 = argmaxz∈Y〈z,∇t〉 − BΦ(z;zt)
η /* Adapt the

secondary decision */
6: yt+1 = argmaxy∈Y〈y,Mt+1〉 − BΦ(y;zt+1)

η /* Adapt the
primary decision */

7: end for

Alireza Kazemipour OSM via OCO
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(Why) Because OSM via OCO is the best :)

Comparison to previous results
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(Proposal 1) OOMA used in the paper was old!

Algorithm 2: OOMA: Two-Update-Per-Step

Require: η ∈ R≥0 /* learning rate */
Φ : Y → R /* mirror map */
M2,M3, · · · ,MT+1 /* Sequence of predictions */

1: Let y1 = z1 = argmaxy∈Y Φ(y)
2: for t = 1 to T do
3: Play yt .
4: Observe the reward function f̃t and let ∇t = ∇f̃t(yt)

5: zt+1 = argmaxz∈Y〈z,∇t〉 − BΦ(z;zt)
η /* Adapt the

secondary decision */
6: yt+1 = argmaxy∈Y〈y,Mt+1〉 − BΦ(y;zt+1)

η /* Adapt the
primary decision */

7: end for
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(Proposal 1) OOMA was based on this paper
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(Proposal 1) OOMA was improved later!
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(Proposal 1) OOMA with single update!

Algorithm 3: OOMA: One-Update-Per-Step

Require: η ∈ R≥0 /* learning rate */
Φ : Y → R /* mirror map */
M2,M3, · · · ,MT+1 /* Sequence of predictions */

1: Let y1 = z1 = argmaxy∈Y Φ(y)
2: for t = 1 to T do
3: Play yt .
4: Observe the reward function f̃t and let ∇t = ∇f̃t(yt)

5: yt+1 = argmaxy∈Y〈y,∇t − Mt + Mt+1〉 − BΦ(y;yt)
η

6: end for
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(Proposal 1) I proved the new OOMA’s dynamic regret

Matching the new algorithm’s regret bounds with the one used
in the paper.

DRT (πy,PT ) ≤ η

2ρ

T∑
t=1

‖∇t − Mt‖2
∗ +

(D2
Φ + 2GΦPT )

η

And when the optimal learning rate η∗ =

√
2ρ(D2

Φ+2GΦPT )∑T
t=1‖∇t−Mt‖2

∗
is

selected:

DRT (πy,PT ) ≤

√√√√2(D2
Φ + 2GΦPT )

ρ

T∑
t=1

‖∇t − Mt‖2
∗
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(Proposal 2) Contradiction of the optimal learning rate

The optimal learning rate η∗ =

√
2ρ(D2

Φ+2GΦPT )∑T
t=1‖∇t−Mt‖2

∗
is

dependent on the knowledge of
∑T−1

t=1 ‖ut+1 − ut‖ ≤ PT .
This is a violation of the adversarial assumption, as the
learner knows how much budget the adversary has to
change uts!
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(Proposal 2) It’s been fixed for Online Gradient Ascent
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(Proposal 2) Extension to OOMA

Design an algorithm for Optimistic Online Mirror Ascent
without the knowledge of the path length and match the

previous regret bounds up to polylogarithmic factors.
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(Proposal 2) Extension to OOMA
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Thank You! :)
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