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(What) What does the paper try to do?

Maximizing monotone submodular functions under general
I II
matroid constraints via online convex optimization.
I
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(What) What does the paper try to do?

Maximizine monotone submedular functions undergeneral
I

I

: o ot

17

o Let V£ [n],neN.

e A set function f: 2" — R is monotone if:

f(A) < f(B),YA,B that AC BC2".
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(What) What does the paper try to do?

Maeaximizing menotone submodular functions undergeneral
T Il
¥ . . L ization.
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o Let V= [n],neN.
e A set function f: 2" — R is submodular if:

f(BU{v}) = f(B) < f(AUu{v}) — f(4),
VA,Bthat ACBC2Y andve V\B.
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(What) What does the paper try to do?

Maeaximizing menotone submodular functions undergeneral
T Il
¥ . . L ization.

I

o Let V= [n],neN.
e A set function f: 2" — R is submodular if:

f(BU{v}) = f(B) < f(AUu{v}) — f(4),
VA,Bthat ACBC2Y andve V\B.

e [t kinda resembles the notion of convexity/concavity in set
functions.
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(What) What does the paper try to do?

I I
matroid constraints via-enline-convex-optimization.

117

o Let V& [n,,neN,and Z C2".
e A matroid is a pair M = (V,Z) such that:

o If BeZand AC Bthen AcT.
o If A,B €T and |A| < |B| then there exists a b € B such
that AU{b} €T
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(What) What does the paper try to do?

I I
matroid constraints via-enline-convex-optimization.

117

o Let V& [n,,neN,and Z C2".
e A matroid is a pair M = (V,Z) such that:

o If BeZand AC Bthen AcT.
o If A,B €T and |A| < |B| then there exists a b € B such

that AU{b} €T
o [t generalizes the concept of linear independence in vector
spaces to sets.
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(What) Let’s put them in an example.

Facility Location Problem (FLP): We want to choose a
subset of potential locations S C L = {l;,---,l,} to open our
facilities (e.g., warehouses) to minimize the total building cost
of the facility, and minimizing the distance d between the
locations and clients C' = {¢y, - ¢} that should be served.
So the objective is:

min Z costpuild (i) + Y mind(l, ¢) | =

les
€S jecC
max E costpuid (1 min d(l, ¢;)
les
€S jel
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(What) Let’s put them in an example.

F(BU{0}) - (B) < f(AU{v}) - f(4),AC B

e FLP is a submodular maximization (minimization)
problem, because:
¢ Diminishing returns. At a certain point, the benefit of
opening a new facility is less valuable than the initial phase,
because the existing facilities have already done a lot of the
heavy lifting.
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(What) Let’s put them in an example.

f(BU{v}) = f(B) < f(AU{v}) - f(4),AC B

e FLP is a submodular maximization (minimization)
problem, because:
¢ Diminishing returns. At a certain point, the benefit of
opening a new facility is less valuable than the initial phase,
because the existing facilities have already done a lot of the
heavy lifting.

e The decisions are of the form {0,1}".

It generalizes the linear independence in vectors to sets.
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(What) FLP

0
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(What) FLP
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(What) Submodular Maximization is NP-Hard

@ In general the problem of maximizing submodular
functions, even in offline setting, is NP-hard! as there are
reductions to the Traveling Salesman Problem.

1 . . .. .
Krause and Golovin, “Submodular function maximization.” 13/32
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(What) Submodular Maximization is NP-Hard

@ In general the problem of maximizing submodular
functions, even in offline setting, is NP-hard! as there are
reductions to the Traveling Salesman Problem.

@ The best approximation ratio by the greedy algorithm is:

1
a=1-—-
€
'Krause and Golovin, “Submodular function maximization.” 13/32
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(What) So the paper does:

In the online setting, the reward (cost) is revealed one by one.
Hence:

o Let X be the decision space forming a matroid.

o Let f; : X = R>¢ be a reward function selected by
adversary among the set of submodular functions F.

The paper’s algorithm tries to find a policy 7, to minimize:
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(What) So the paper does:

In the online setting, the reward (cost) is revealed one by one.
Hence:

o Let X be the decision space forming a matroid.

o Let f; : X = R>¢ be a reward function selected by
adversary among the set of submodular functions F.

The paper’s algorithm tries to find a policy 7, to minimize:
o Static regret:

T
SRy(mx,) ==  sup {a max » fi(u) —E
(Lerr | et ;

th(xt)] }
t=1
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(What) So the paper does:

In the online setting, the reward (cost) is revealed one by one.
Hence:

o Let X be the decision space forming a matroid.

o Let f; : X = R>¢ be a reward function selected by
adversary among the set of submodular functions F.

The paper’s algorithm tries to find a policy 7, to minimize:
o Static regret:

T
SRy(mx, a) = sup {agle@c;ft(u)

(f)E,eFT

th(xt)] }
t=1

o Dynamic regret:

DRy (mx, Pr,a) '=  sup o max fi(uy)
(f)l,eFT Zufe

<l

where ZtT:_llHut_H - llt” < Pr 14/32
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(What) So the paper does:

T
SRy (mg,) =  sup {oz max Z fi(u)

(L, eFr | wer o

T
E zmxal}
t=1

DRp(mx, Pr,a) == sup aZmaXft (uy)
(FE,eFT THEA

[l

o Full-Information
o Bandit

o Optimistic: Some predictions about f; are available to the

learner.
15/32
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(How) Concave Relaxation

Let Y 2 conv(X), Z: Y — X a randomized rounding, and let
f:Y — R be a concave L-Lipschitz function such that:

f(x) > f(x),Vxe X

and
Ez[f(E(y))] > a- f(y),Vy € Y

Then since ) is convex and compact, and j. is concave and
L-Lipschitz, we can run an OCO method (e.g., Online mirror
Ascent (Descent)) and get a regret which it holds that:

SRT(ﬂ'X, Oé) S (e SRT(Try)

and
DRT(ﬂ'X, Pr, a) < a- DRT(wy, PT)
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(How) Weighted Threshold Potential Functions

One such functions f where they are also equal to ]N”, and can
represent a wide variety of problems, are Weighted Threshold
Potential (WTP) functions:

f(x) & Z ;W (x, S;,wy, b;),Vx € {0,1}"

i€l

I: An arbitrary index set.

ci € Rsg for i € 1.

Si C [n]

b; € R>gU{oo}: A threshold.
w; € [0, b]!5!

U(x,S,w,b) = min {b, Zjes xjwj}

e 6 o o

(]
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(How) Randomized Swap Rounding

e We found f and f; if we find Z:) — X, then we are done.

f(x) > f(x),vxe X

E=[fEW)] = a- f(y),Vy €Y
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(How) Randomized Swap Rounding

e We found f and f; if we find 2: Y — &, then we are done.
e Randomized Swap Rounding? (RSR) on (WTP) would

result in: )
a=1— -
e

fx) > f(x),Vxe X ]

[ Ez[f(E@))] > o f(y),Vy €Y ]

2Chekuri, Vondrék, and Zenklusen, “Dependent randomized rounding
via exchange properties of combinatorial structures” 19/32
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(How) Summary

@ Construct the convex hull of X = {0,1}".
o V£ conv(X)
@ Run an OCO method on Y. (Yet to be discussed)

@ Convert the fractional solution obtained on Y to an integral
solution € X via RSR with a =1 — % approximation.

@ Enjoy the regret bounds.

[ SRy (mx, @) < o+ SRy (my) ]

[ DRy (g, Pr,0) < a- DRp(my, Pr)
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(How) Optimistic Online Mirror Ascent

Algorithm 1: OOMA: Two-Update-Per-Step

Require: n € R>g /* learning rate */
®:Y—-R /* mirror map */
My, Mg, -+, Mpiq /* Sequence of predictions */

1:
2:
3:
4:
5

7

Let y1 = z1 = argmaxycy ®(y)
for t=1to T do
Play y;.
Observe the reward function f; and let V; = V}t(yt)

_ Ba(zm) /* Adapt the

Zi11 = arg max,cy(z, Vy) n

secondary decision */

Yi+1 = arg maxycy(y, Mi11) — % /* Adapt the

primary decision */
end for
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(Why) Because OSM via OCO is the best :)

Z 2
| D lee —&F 1%,
i=

(1 — 1/e)-regret (Full )
Paper || Prob. Class Static ynamic Optimistic Time
Uni. [Part. | Gen. Uni. art. |[Gen. || Uni. | Part.| Gen.
[4] GS rlog(mT | X | X X X X X X X T10, .
Om -n?/e
2] as log (2) T X X X x | x X nr® + Om
2] \/T og () log(nT/c)
[3] GS r/rlog(nT)T| X | X r(rlog(nT) + Pr)T| X X X X X nr
[1] GS r2 /log(n)T | X X X X X X X n2ep
[30] DR-S rnT X X X X X X TOoco - Om + nr
T
[31] DR-S T5 X X X X X X T5 Ooco - Om + nr?
[32] DR-S VrnT X X X X X X Ooco - Om + nr2
33 [ 1wbD n(a+2)VT T X X [ x [ x [ x| X 1T TOa
\/r(r1og(%) + log(n) P4
This = = 2
e WTP ry/log(2)T \/T(TIOg( %) + log(n) P7)T @

Comparison to previous results
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(Proposal 1) OOMA used in the paper was old!

Algorithm 2: OOMA: Two-Update-Per-Step

Require: n € R>g /* learning rate */
®:Y—-R /* mirror map */
My, Mg, -+, Mpiq /* Sequence of predictions */

1:
2:
3:
4:
5

7

Let y1 = z1 = argmaxycy ®(y)
for t=1to T do
Play y;.
Observe the reward function f; and let V; = V}t(yt)

_ Ba(zm) /* Adapt the

Zi11 = arg max,cy(z, Vy) n

secondary decision */

Yi+1 = arg maxycy(y, Mi11) — % /* Adapt the

primary decision */
end for
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(Proposal 1) OOMA was based on this paper

Online Learning with Predictable Sequences

Alexander Rakhlin Karthik Sridharan
University of Pennsylvania University of Pennsylvania

May 27, 2014
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(Proposal 1) OOMA was improved later!

Proceedings of Machine Learning Research 76:1-40, 2017 Algorithmic Learning Theory 2017

A Modular Analysis of Adaptive (Non-)Convex Optimization:
Optimism, Composite Objectives, and Variational Bounds

Pooria Joulani POORIA@QUALBERTA.CA
Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada

Andras Gyorgy A.GYORGY@IMPERIAL.AC.UK
Department of Electrical and Electronic Engineering

Imperial College London
London, UK

Csaba Szepesvari SZEPESVAQUALBERTA.CA
Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada
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(Proposal 1) OOMA with single update!

Algorithm 3: OOMA: One-Update-Per-Step

Require: n € R>g /* learning rate */
P:)Y—>R /* mirror map */
My, Mg, -+, Mpiq /* Sequence of predictions */

1: Let y1 = 71 = arg maxycy ®(y)

2: for t=1to T do

3:  Play yq.

4:  Observe the reward function ]N‘t and let V; = Vft(yt)
5. Y41 = arg maXyey<Y, Vi— M+ Miyy) — 734)%’%)

6: end for
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(Proposal 1) I proved the new OOMA’s dynamic regret

Matching the new algorithm’s regret bounds with the one used
in the paper.

(D% +2Go Pr)

T
DRy (ry, Pr) < 21 Z IV, — My||2 +

2p(D3+2Ge Pr) .

And when the optimal learning rate n* =
P g rate q S V= M2

selected:

2(D2 + 2Gg Pr) ZT:
|

DRy(my, Pr) < P

|V — My|2
t=1
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(Proposal 2) Contradiction of the optimal learning rate

2P(D<21>+2G<I>PT) .
S IVe— M2

dependent on the knowledge of ZtT:_llHutH —wl < Pr.

@ The optimal learning rate n* =

o This is a violation of the adversarial assumption, as the
learner knows how much budget the adversary has to
change us!
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(Proposal 2) It’s been fixed for Online Gradient Ascent

Adaptive Online Learning in Dynamic Environments

Lijun Zhang, Shiyin Lu, Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology
Nanjing University, Nanjing 210023, China
{zhanglj, lusy, zhouzh}@lamda.nju.edu.cn
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(Proposal 2) Extension to OOMA

Design an algorithm for Optimistic Online Mirror Ascent
without the knowledge of the path length and match the
previous regret bounds up to polylogarithmic factors.
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(Proposal 2) Extension to OOMA

Algorithm 4: Optimistic Online Mirror Ascent: One-Update-Per-Step with Adaptive learning
Rate

Require: o € R>p /* learning rate */
®:Y—->R /* mirror map */
Mo, M3, ,Mp4q /* Sequence of predictions */

1: Let N =1+ [log, v4 + 8T
. i) _ v2pDa2 7 .
2: Letn()_ szﬁ ,i=1, ,N
3: Letpr = [+, -, %] € [0, 1]¥ /* Uniform prior over experts */
4: Lety, = argmax, ¢y (y)
5: fort =1toT do
6. Play y;. ~ ~
7 Observe the reward function f; and let V; = V fi(y:)
8:  Update each expert: ygz_l = argmax, ey (y, Vi — My + Mey1) — ﬂéﬂ%;}ﬂ’i =1---,N

) RO
. O op (eF(40))
9:  Update each weight: &) _ P e).(p(a ~ o, 1=1,---,N
p &nt: Py S p® exp (aft(yi”)) AR
N i) G
100 yep1 =3, pftﬁh)’il
11: end for
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Thank You! :)
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