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Abstract

We will: (i) replace the optimistic online mirror ascent1 algorithm in our target
paper, which is old, with the most updated version of this algorithm and prove that
the new algorithm’s regret matches the regret of the algorithm in the paper, (ii)
give an algorithm based on the idea of adaptive learning for dynamic environments
that matches the dynamic regret of the optimistic online mirror ascent in the target
paper, but without the need of knowing the path-length in advance which is a
violation of the adversarial input assumption happening in our target paper.

Clarification

Throughout this report by mentioning the phrase target paper, we mean the paper that we were
supposed to summarize and work on.

1 Setup

The problem of interest is online submodular maximization (OSM) via online convex optimization
(OCO). In this setting inputs X ⊆ {0, 1}n represent general matroids and the reward function
f : X → R≥0 ∈ F is monotone and submodular. In order to turn this problem into an OCO instant,
the integral input should be transformed to a fractional counterpart that is convex and compact and be
transformed back. By defining Y := conv(X ) to be the convex hull of X and having a randomized
mapping Ξ : Y → X to map a fractional solution y ∈ Y and, possibly, a source of randomness back
to an integral solution x ∈ X , these requirements are met. Also in the OCO the reward function
being optimized should be L-Lipschitz concave w.r.t to a norm over its input for some L ∈ R≥0 but
in order to reduce an OSM problem to an OCO counterpart, more restrictions should be put on the
reward function evaluating fractional solutions Y . The following assumption sums up the necessary
properties of such reward functions:
Assumption (Sandwich Property). There exists an α ∈ (0, 1], and L ∈ R≥0, and a randomized
rounding Ξ : Y → X such that, for every f :∈ X → R≥0 ∈ F there exists a concave function
f̃ : Y → R that is not only L-Lipschitz but also:

f̃(x) ≥ f(x),∀x ∈ X
and

EΞ[f(Ξ(y))] ≥ α · f̃(y),∀y ∈ Y

2 Using an instantiation of OCO to solve OSM

Having introduced the problem in Section 1, assuming a randomized rounding Ξ and a concave
relaxed function f̃ exist, so integral to fractional conversion and vice-versa is done straightforwardly,

1In the literature it is more common to talk about online mirror descent but since we are dealing with a
maximization problem, it turns into online mirror ascent.



in this section we investigate online mirror ascent (OMA) as an OCO method, and one of its variants,
optimistic online mirror ascent used in the target paper. The setting is as follows: inputs are in
full-information adversarially chosen configuration, the performance measure is the dynamic regret
and the problem could be in the optimistic setting and/or not.

2.1 Optimistic Online Mirror Ascent: Two-Update-Per-Step

Let the mirror map Φ : X → R be strongly (thus strictly) convex, smooth and twice differentiable
and BΦ denote the Bregman divergence with respect to Φ. Then the following algorithm represents
the OMA applied on the fractional solutions of an OSM instance:

Algorithm 1: Online Mirror Ascent
Require: η ∈ R≥0 /* learning rate */

Φ : Y → R /* mirror map */
1: Let y1 = argmaxy∈Y Φ(y)
2: for t = 1 to T do
3: Play yt.
4: Observe the reward function f̃t and let ∇t = ∇f̃t(yt)

5: yt+1 = argmaxy∈Y⟨y,∇t⟩ − BΦ(y;yt)
η

6: end for

The Algorithm 1 is proved to enjoy sublinear regret under the worst-case analysis [1, 3]; however,
Rakhlin and Sridharan [9] later introduced the optimistic online mirror ascent (OOMA) as a variant
that takes advantage of benign inputs that do not represent the worst-case scenario. So some
predictions about the input in OOMA can be made, and those predictions are assumed to be available
to the learner in advance. As a consequence obtaining zero regret is possible in this setting. Moreover
OOMA is robust enough such that if no prediction could be made, or the predictions were wrong, or
the learner was facing the worst-case scenario, it can default back to OMA and still enjoys a sublinear
regret.

Let Φ and BΦ be the same as they were in OMA. Now let Mt denote a prediction about f̃t. OOMA,
as was introduced in Rakhlin and Sridharan [9] and was used in our target paper, takes the following
form to take advantage of such predictions:

Algorithm 2: Optimistic Online Mirror Ascent: Two-Update-Per-Step
Require: η ∈ R≥0 /* learning rate */

Φ : Y → R /* mirror map */
M2,M3, · · · ,MT+1 /* Sequence of predictions */

1: Let y1 = z1 = argmaxy∈Y Φ(y)
2: for t = 1 to T do
3: Play yt.
4: Observe the reward function f̃t and let ∇t = ∇f̃t(yt)

5: zt+1 = argmaxz∈Y⟨z,∇t⟩ − BΦ(z;zt)
η /* Adapt the secondary decision */

6: yt+1 = argmaxy∈Y⟨y,Mt+1⟩ − BΦ(y;zt+1)
η /* Adapt the primary decision */

7: end for

OOMA as in Algorithm 2 includes a two-update-per-step procedure. Initially an intermediate decision
called the secondary decision is computed the same way the decision is obtain in OMA; but, instead of
using this decision, the learner computes another decision called the primary decision according to the
precision of the prediction Mt+1 of the future reward f̃t+1 and the secondary decision that was just
computed. Note that if (Mt)

T+1
t=2 = 0, then OOMA would be equal to OMA and if (Mt = ∇t−1)

T+1
t=2 ,

we will show that static/dynamic regret would be zero.
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2.2 Regret Bounds

Before starting the analysis, it is useful to revisit definitions of the static and the dynamic regrets. Let
πw be the policy that the learner follows when it chooses actions w ∈ W where W is some domain,
let T be the horizon of the interaction, and let the problem be of the form of an OSM with adversarial
inputs.

Static regret (performance against the best fixed decision in hindsight) is defined as:

SRT (πx) := sup
(ft)Tt=1∈FT

{
max
x∈X

T∑
t=1

ft(x)− E

[
T∑

t=1

ft(xt)

]}
where the expectation is with respect to the randomness present in the interaction.

Dynamic regret (performance against the best-per-step sequence of decisions) is defined as:

DRT (πx) := sup
(ft)Tt=1∈FT

{
T∑

t=1

max
ut∈X

ft(ut)− E

[
T∑

t=1

ft(xt)

]}
If uts change rapidly and radically from time to time, then it becomes notoriously hard to expect
the learner learn something meaningful as in the extreme case uts would change like a noise. Hence
usually a limit is imposed on how much the adversary can change the comparator sequence (ut)

T
t=1.

One such limit is known as the path length. A path length of PT ∈ R≥0 over a time horizon T

expresses that
∑T−1

t=1 ∥ut+1 − ut∥ ≤ PT . Hence we denote the dynamic regret for a sequence with
the path length PT for the policy πy that has actions y ∈ Y , by DRT (πy, PT ).

Theorem 1. Consider an OSM instance with the concave L−Lipschitz relaxed functions f̃ ∈ F̃ where
the set F̃ is chosen by the adversary and let the fractional decision set be Y := conv(X ). Algorithm 2
configured with a ρ-strongly convex, smooth and twice differentiable mirror map Φ : Y → R, where
ρ ∈ R>0; ∥∇Φ(y)∥∗ ≤ GΦ for all y; and DΦ :=

√
maxz,y∈Y {Φ(z)− Φ(y)} as the diameter of

Y relative to Φ, enjoys the following upper bound on the dynamic regret with the path length PT over
the horizon T :

DRT (πy, PT ) ≤
η

2ρ

T∑
t=1

∥∇t −Mt∥2∗ +
(D2

Φ + 2GΦPT )

η
(1)

And when the optimal learning rate η∗ =

√
2ρ(D2

Φ+2GΦPT )∑T
t=1∥∇t−Mt∥2

∗
is selected, the following holds:

DRT (πy, PT ) ≤

√√√√2(D2
Φ + 2GΦPT )

ρ

T∑
t=1

∥∇t −Mt∥2∗ (2)

The proof can be found in the target paper.

It is useful to point out: if Mt = 0 the bound holds for the setting with no predictions available, if
Mt = ∇t obtaining zero regret is possible and if PT = 0 we the get the static regret bound.

2.3 Optimistic Online Mirror Ascent: One-Update-Per-Step (Our Contribution 1)

Algorithm 2 was the first version of OOMA but not the last, nor the best. The target paper did not
account for the latest result in this area which is due to Joulani et al. [4] where they introduce a variant
of OOMA that only requires one update per step, and still matches the static regret bound of OOMA
proved by Rakhlin and Sridharan [9, 10].

We, with the help of Orabona [7], use the idea of Joulani et al. [4] and give Algorithm 3 that computes
only a single update. However we extend the result of Joulani et al. [4] and prove the dynamic regret
bounds that match the bounds of Eq. 1 and 2.

Theorem 2. Algorithm 3 under the same conditions stated in Theorem 1, enjoys the regret bounds of
Eq. 1 and 2.
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Algorithm 3: Optimistic Online Mirror Ascent: One-Update-Per-Step
Require: η ∈ R≥0 /* learning rate */

Φ : Y → R /* mirror map */
M2,M3, · · · ,MT+1 /* Sequence of predictions */

1: Let y1 = argmaxy∈Y Φ(y)
2: for t = 1 to T do
3: Play yt.
4: Observe the reward function f̃t and let ∇t = ∇f̃t(yt)

5: yt+1 = argmaxy∈Y⟨y,∇t −Mt +Mt+1⟩ − BΦ(y;yt)
η

6: end for

In order to prove Theorem 3 we separately establish two supplementary lemmas to prove the dynamic
regret. They are all due to Orabona [7, 8, 6] with the following differences: (i) Our setting is a
maximization problem so we work on online mirror ascent rather than descent (ii) Dynamic regret in
non-optimistic setting and static regret in optimistic setting were given but, no proof was given for
the dynamic regret in optimistic setting (their combination) which is our contribution.

It is useful to note that we have avoided restating assumptions that have already been given in previous
sections for convenience.
Lemma 1. The following inequality holds for OMA as in Algorithm 1:

η(f̃t(u)− f̃t(yt)) ≤ ⟨η∇t,u− yt⟩ ≤ BΦ(u;yt)−BΦ(u;yt+1) +
η2

2ρ
∥∇t∥2∗,∀u ∈ Y

Proof. From the optimality condition for the update rule of Algorithm 1 (Line 5) and the KKT
theorem [Hazan [2], Theorem 2.2] we have:

⟨η∇t −∇Φ(yt+1) +∇Φ(yt),yt+1 − u⟩ ≥ 0,∀u ∈ Y (3)

Also form the definition of supergradients we have:

⟨η∇t,u− yt⟩ = ⟨∇Φ(yt+1)−∇Φ(yt)− η∇t,yt+1 − u⟩
+ ⟨∇Φ(yt)−∇Φ(yt+1),yt+1 − u⟩+ ⟨η∇t,yt+1 − yt⟩

(4)

Thus using Eq. 3

⟨η∇t,u− yt⟩ ≤ ⟨∇Φ(yt)−∇Φ(yt+1),yt+1 − u⟩+ ⟨η∇t,yt+1 − yt⟩ (5)

The following is according to the definition of Bregman divergence [2]. For any a,b, c in the same
convex set that constitutes the domain of Φ:

(a− b)⊤(∇Φ(c)−∇Φ(b)) = BΦ(a;b)−BΦ(a; c) +BΦ(b; c)

Hence

⟨η∇t,u− yt⟩ ≤ BΦ(u;yt)−BΦ(u;yt+1)−BΦ(yt+1;yt) + ⟨η∇t,yt+1 − yt⟩ (6)

Also, for any a,b ∈ Rd:

⟨a,b⟩ = inf
λ∈R≥0

{
1

2λ
∥a∥2∗ +

λ

2
∥b∥2

}
Thus by choosing λ = ρ:

⟨η∇t,yt+1 − yt⟩ ≤
η2

2ρ
∥∇t∥2∗ +

ρ

2
∥yt+1 − yt∥2 (7)

Plugging Eq. 7 into Eq. 6:

⟨η∇t,u− yt⟩ ≤ BΦ(u;yt)−BΦ(u;yt+1)−BΦ(yt+1;yt) + ⟨η∇t,yt+1 − yt⟩

≤ BΦ(u;yt)−BΦ(u;yt+1)−BΦ(yt+1;yt) +
η2

2ρ
∥∇t∥2∗ +

ρ

2
∥yt+1 − yt∥2

(8)
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Since Φ is ρ-strongly convex, then BΦ(yt+1;yt) ≥ ρ
2∥yt+1 − yt∥2 hence Eq. 8 is turned into:

⟨η∇t,u− yt⟩ ≤ BΦ(u;yt)−BΦ(u;yt+1)−BΦ(yt+1;yt) +
η2

2ρ
∥∇t∥2∗ +

ρ

2
∥yt+1 − yt∥2

≤ BΦ(u;yt)−BΦ(u;yt+1) +
η2

2ρ
∥∇t∥2∗

Lemma 2. The dynamic regret of OMA as in Algorithm 1 is the following:

DRT (πy, PT ) ≤
D2

Φ + 2GΦPT

η
+

T∑
t=1

η

2ρ
∥∇t∥2∗

Proof. From Lemma 1 we have:

η(f̃t(ut)− f̃t(yt)) ≤ ⟨η∇t,ut − yt⟩ ≤ BΦ(ut;yt)−BΦ(ut;yt+1) +
η2

2ρ
∥∇t∥2∗

≤ BΦ(ut;yt)−BΦ(ut+1;yt+1) +BΦ(ut+1;yt+1)−BΦ(ut;yt+1) +
η2

2ρ
∥∇t∥2∗

By diving the sides by η and summing over time:

DRT (πy, PT ) ≤
T∑

t=1

BΦ(ut;yt)−BΦ(ut+1;yt+1)

η︸ ︷︷ ︸
(I)

+

T∑
t=1

BΦ(ut+1;yt+1)−BΦ(ut;yt+1)

η︸ ︷︷ ︸
(II)

+

T∑
t=1

η

2ρ
∥∇t∥2∗

(9)

Let us take care of terms (I) and (II) separately.

(I) is a telescopic sum hence:

(I) =
BΦ(u1;y1)−BΦ(uT+1;yT+1)

η

For (II) we have:

(II) =
1

η

[
ϕ(ut+1)− ϕ(u1) +

T∑
t=1

⟨∇Φ(yt+1),ut − ut+1⟩

]

=
1

η

[
ϕ(ut+1)− ϕ(u1) +

T∑
t=1

⟨∇Φ(yt+1)−∇Φ(y1) +∇Φ(y1),ut − ut+1⟩

]

=
1

η

ϕ(ut+1)− ϕ(u1) +

T∑
t=1

⟨∇Φ(y1),ut − ut+1⟩︸ ︷︷ ︸
telescopic sum

+

T∑
t=1

⟨∇Φ(yt+1)−∇Φ(y1),ut − ut+1⟩


=

1

η

[
ϕ(ut+1)− ϕ(u1) + ⟨∇Φ(y1),u1 − uT+1⟩+

T∑
t=1

⟨∇Φ(yt+1)−∇Φ(y1),ut − ut+1⟩

]

=
1

η

[
BΦ(uT+1;y1)−BΦ(u1;y1) +

T∑
t=1

⟨∇Φ(yt+1)−∇Φ(y1),ut − ut+1⟩

]
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By plugging (I) and (II) into Eq. 9 we have:

DRT (πy, PT ) ≤
BΦ(u1;y1)−BΦ(uT+1;yT+1)

η
+

BΦ(uT+1;y1)−BΦ(u1;y1)

η

+
1

η

T∑
t=1

⟨∇Φ(yt+1)−∇Φ(y1),ut − ut+1⟩+
T∑

t=1

η

2ρ
∥∇t∥2∗

=
BΦ(uT+1;y1)−BΦ(uT+1;yT+1)

η︸ ︷︷ ︸
(III)

+
1

η

T∑
t=1

⟨∇Φ(yt+1)−∇Φ(y1),ut − ut+1⟩︸ ︷︷ ︸
(IV )

+

T∑
t=1

η

2ρ
∥∇t∥2∗

Now let us take care of terms (III) and (IV) separately.

For (III) since the Bregman divergence is always non-negative, we have:

(III) =
BΦ(uT+1;y1)−BΦ(uT+1;yT+1)

η

≤ BΦ(uT+1;y1)

η

≤ D2
Φ

η

For (IV) using Cauchy-Shwarz inequality and that ∥∇Φ(y)∥∗ ≤ GΦ, we have:

(IV ) =

T∑
t=1

⟨∇Φ(yt+1)−∇Φ(y1),ut − ut+1⟩

≤
T∑

t=1

∥∇Φ(yt+1)−∇Φ(y1)∥∗∥ut − ut+1∥

≤ 2GΦPT

Putting everything together we have:

DRT (πy, PT ) ≤
D2

Φ + 2GΦPT

η
+

T∑
t=1

η

2ρ
∥∇t∥2∗

Now we have all the tools to prove Theorem 2.

Proof. By replacing ∇t with ∇t −Mt +Mt+1, and u with ut in Eq. 6 and summing over time, we
have:

T∑
t=1

⟨∇t −Mt +Mt+1,ut − yt⟩︸ ︷︷ ︸
(V )

≤
T∑

t=1

BΦ(ut;yt)−BΦ(ut;yt+1)−BΦ(yt+1;yt)

η︸ ︷︷ ︸
□

+

T∑
t=1

⟨∇t −Mt +Mt+1,yt+1 − yt⟩︸ ︷︷ ︸
(V I)

Let us expand (V) and (VI) separately.

For (V) we have:

(V ) =

T∑
t=1

⟨∇t,ut − yt⟩︸ ︷︷ ︸
DRT (πy,PT )

+

T∑
t=1

⟨Mt+1 −Mt,ut⟩ −
T∑

t=1

⟨Mt+1 −Mt,yt⟩
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For (VI) we have:

(V I) =

T∑
t=1

⟨∇t −Mt,yt+1 − yt⟩+
T∑

t=1

⟨Mt+1,yt+1 − yt⟩

Putting everything together we have:

DRT (πy, PT ) +

T∑
t=1

⟨Mt+1 −Mt,ut⟩ −
T∑

t=1

⟨Mt+1 −Mt,yt⟩ ≤

□+

T∑
t=1

⟨∇t −Mt,yt+1 − yt⟩+
T∑

t=1

⟨Mt+1,yt+1 − yt⟩

Which implies:

DRT (πy, PT ) +

T∑
t=1

⟨Mt+1 −Mt,ut⟩ ≤

□+

T∑
t=1

⟨∇t −Mt,yt+1 − yt⟩+
T∑

t=1

⟨Mt+1,yt+1 − yt⟩+
T∑

t=1

⟨Mt+1 −Mt,yt⟩

Which implies:

DRT (πy, PT ) +

T∑
t=1

⟨Mt+1 −Mt,ut⟩ ≤ □+

T∑
t=1

⟨∇t −Mt,yt+1 − yt⟩+
T∑

t=1

(⟨Mt+1,yt+1⟩ − ⟨Mt,yt⟩)

≤ □+

T∑
t=1

⟨∇t −Mt,yt+1 − yt⟩+ ⟨MT+1,yT+1⟩ − ⟨M1,y1⟩

Hence

DRT (πy, PT ) ≤ □+

T∑
t=1

⟨∇t −Mt,yt+1 − yt⟩+ ⟨MT+1,yT+1⟩ − ⟨M1,y1⟩ −
T∑

t=1

⟨Mt+1 −Mt,ut⟩

Given that the left-hand side is independent of MT+1, we can safely set it to zero [see Joulani et al.
[4], Appendix 6]:

DRT (πy, PT ) ≤ □+

T∑
t=1

⟨∇t −Mt,yt+1 − yt⟩ − ⟨M1,y1⟩ −
T∑

t=1

⟨Mt+1 −Mt,ut⟩

M1 is the prediction of the supergradients at t = 1 and y1, as the optimal decision, tries to move in
the direction of M1 to maximize the objective thus, ⟨M1,y1⟩ ≥ 0:

DRT (πy, PT ) ≤ □+

T∑
t=1

⟨∇t −Mt,yt+1 − yt⟩ −
T∑

t=1

⟨Mt+1 −Mt,ut⟩

Since Mt is prediction about the supergradients of ft and ut maximizes the reward function at ft,
thus Mtut ≤ Mt+1ut,∀t ∈ [T ] (gradient at the optimal point moves the optimal solution the least).
Hence:

DRT (πy, PT ) ≤ □+

T∑
t=1

⟨∇t −Mt,yt+1 − yt⟩

≤
T∑

t=1

BΦ(ut;yt)−BΦ(ut;yt+1)−BΦ(yt+1;yt)

η
+

T∑
t=1

⟨∇t −Mt,yt+1 − yt⟩

And similar to the procedure of Lemma 2 with the difference that instead of ∇t, ∇t −Mt appears on
the right hand side, we get:

DRT (πy, PT ) ≤
D2

Φ + 2GΦPT

η
+

T∑
t=1

η

2ρ
∥∇t −Mt∥2∗

The optimal learning rate of Eq. 2 is found by taking the derivative of the right hand side w.r.t η.
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3 Optimal Learning Rate: Without the Prior Knowledge of Path Length (Our
Contribution 2)

The optimal learning rate of Theorem 1 is obtained when the learner knows the path length PT ; this
is a violation of the assumption on the inputs being adversarial as the learner knows how much the
adversary can change the comparator sequence. Zhang et al. [12] has given an algorithm for online
gradient ascent (OGA) which does not need the path length to be known in advance. We, with the
help of Orabona [8] who explained the the same algorithm of Zhang et al. [12], give Algorithm 4
which is for OOMA (as our contribution) when Φ = 1

2∥y∥
2
2 which is a common choice for the mirror

map [2, 5].

The optimal learning rate used to be η∗ =

√
2ρ(D2

Φ+2GΦPT )∑T
t=1∥∇t−Mt∥2

∗
, by assumption that ft is L-Lipschitz

we have ∥∇t∥∗ ≤ L and since Mt is the prediction about the supergradients of ft, it is reasonable
to also assume that ∥Mt∥∗ ≤ L. Also since

∑T−1
t=1 ∥ut+1 − ut∥ ≤ PT , then PT ≤ DΦT and when

Φ = 1
2∥y∥

2
2, then DΦ = GΦ. Hence by replacing the minimum and maximum of the parameters, η∗

is in the following range:
√
2ρDΦ

2L
√
T

≤ η∗ ≤
√
2ρDΦ

2L
√
T

·
√
1 + 2T

So consider a grid of N = 1 +
⌈
log2

√
4 + 8T

⌉
learning rates where η(i) =

√
2ρDΦ2i−1

2L
√
T

for i =

1, · · · , N which results in η(1) =
√
2ρDΦ

2L
√
T

and η(N) =
√
2ρDΦ

2L
√
T

·
√
1 + 2T . This grid implies that there

exists an index i∗:

η(i
∗) ≤ η∗ ≤ 2η(i

∗) (10)

Thus leveraging the idea of exponentially weighted average forecaster (EWA) [1], we can run multiple
instances of OOMA with different learning rates that belong to the aforementioned grid (where Eq. 10
guarantees that at least one of them is the optimal), and treat each of these OOMA instances as an
expert. EWA ensures that the best expert will be eventually followed which is translated to finding
the optimal learning rate in our problem.

Algorithm 4: Optimistic Online Mirror Ascent: One-Update-Per-Step with Adaptive Learning
Rate
Require: α ∈ R≥0 /* learning rate */

Φ : Y → R /* mirror map */
M2,M3, · · · ,MT+1 /* Sequence of predictions */

1: Let N = 1 +
⌈
log2

√
4 + 8T

⌉
2: Let η(i) =

√
2ρDΦ2i−1

2L
√
T

, i = 1, · · · , N
3: Let p1 = [ 1N , · · · , 1

N ] ∈ [0, 1]N /* Uniform prior over experts */
4: Let y1 = argmaxy∈Y Φ(y)
5: for t = 1 to T do
6: Play yt.
7: Observe the reward function f̃t and let ∇t = ∇f̃t(yt)

8: Update each expert: y(i)
t+1 = argmaxy∈Y⟨y,∇t −Mt +Mt+1⟩ − BΦ(y;yt)

η(i) , i = 1, · · · , N

9: Update each weight: p(i)
t+1 =

p
(i)
t exp

(
αf̃t

(
y
(i)
t

))
∑N

j=1 p
(j)
t exp

(
αf̃t

(
y
(j)
t

)) , i = 1, · · · , N

10: yt+1 =
∑N

i=1 p
(i)
t+1y

(i)
t+1

11: end for

For proving the regret bound of Algorithm 4, it is necessary to state the following lemma of Zhang
et al. [12] which is based on EWA in Cesa-Bianchi and Lugosi [1].
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Lemma 3. Let p(i)
1 denote the initial probability of following the expert (i) in EWA, α ∈ R≥0, and,

without loss of generality, assume f̃t(·) is bounded 2 in [0, c] at all time steps. The following is the
regret of expert (i) in Algorithm 4:

max
i

(
T∑

t=1

f̃t(y
(i)
t )− 1

α
ln

1

p
(i)
1

)
−

T∑
t=1

f̃t(yt) ≤
αTc2

8

Then by choosing α =
√

8 lnN
Tc2 to minimize the upper bound and the fact that p(i)

1 = 1
N , for all

i = 1, · · · , N we have:
T∑

t=1

f̃t(y
(i)
t )−

T∑
t=1

f̃t(yt) ≤
c
√
2T lnN

2

Note that if the upper bound is valid for the max member, then it is true for all members.

Proof. Let:

F
(i)
t =

t∑
τ=1

f̃τ

(
y(i)
τ

)
,Wt =

N∑
i=1

p
(i)
1 exp

(
αF

(i)
t

)
Line 9 in Algorithm 4 implies that:

p
(i)
t =

p
(i)
1 exp

(
αF

(i)
t−1

)
∑N

j=1 p
(j)
1 exp

(
αF

(j)
t−1

) , t ≥ 2 (11)

Also:

lnWT = ln

(
N∑
i=1

p
(i)
1 exp

(
αF

(i)
T

))
≥ ln

(
max

i
p
(i)
1 exp

(
αF

(i)
T

))
= αmax

i

(
F

(i)
T − 1

α
ln

1

p
(i)
1

) (12)

Next let us bound ln ( Wt

Wt−1
). For t ≥ 2, we have:

ln (
Wt

Wt−1
) = ln

 ∑N
i=1 p

(i)
1 exp

(
αF

(i)
t

)
∑N

j=1 p
(j)
1 exp

(
αF

(j)
t−1

)


= ln

∑N
i=1 p

(i)
1 exp

(
αF

(i)
t−1

)
exp

(
αf̃t(y

(i)
t )
)

∑N
j=1 p

(j)
1 exp

(
αF

(j)
t−1

)


= ln

(∑
i

p
(i)
t exp

(
αf̃t

(
y
(i)
t

)))
(Using Eq. 11)

When t = 1, we have:

lnW1 = ln

(∑
i

p
(i)
1 exp

(
αf̃1

(
y
(i)
1

)))
Hence

lnWT = lnW1 +

T∑
t=2

ln

(
Wt

Wt+1

)
=

T∑
t=1

ln

(∑
i

p
(i)
t exp

(
αf̃t

(
y
(i)
t

)))
(13)

2Bounded reward functions is a common and necessary condition in online learning [Lattimore and Szepesvári
[5], Chapter 1 and also Szepesvári [11], Chapter 1].
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On the other hand, Hoeffding’s inequality states that for any random variable X such that a ≤ X ≤ b,
and any s ∈ R:

ln (E [exp(sX)]) ≤ sE [X] +
s2(b− a)2

8

So since 0 ≤ f̃t(·) ≤ c for all t, we apply the Hoeffding’s inequality to the inner summand of Eq. 13

ln

(∑
i

p
(i)
t exp

(
αf̃t

(
y
(i)
t

)))
≤ α

∑
i

p
(i)
t f̃t

(
y
(i)
t

)
+

α2c2

8

≤ αf̃t

(∑
i

p
(i)
t y

(i)
t

)
+

α2c2

8
(Jensen’s inequality for concave functions)

= αf̃t(yt) +
α2c2

8

Substituting the above inequality in Eq. 13, we have:

lnWT ≤ α

T∑
t=1

f̃t(yt) +
Tα2c2

8

Substituting the above inequality in Eq. 12 and substituting F
(i)
T with its explicit value, we have:

max
i

(
T∑

t=1

f̃t

(
y
(i)
t

)
− 1

α
ln

1

p
(i)
1

)
≤

T∑
t=1

f̃t(yt) +
Tαc2

8

Theorem 3. Algorithm 4 matches the optimal regret bound of Theorem 2 up to some polylogarithmic
factors without the need of knowing PT in advance.

Proof. According to Theorem 2, the regret of expert (i) in Algorithm 4 is:

T∑
t=1

f̃t(ut)−
T∑

t=1

f̃t(y
(i)
t )

≤ η(i)

2ρ

T∑
t=1

∥∇t −Mt∥2∗ +
(D2

Φ + 2GΦPT )

η(i)

And according to Eq.10:

T∑
t=1

f̃t(ut)−
T∑

t=1

f̃t(y
(i)
t )

≤ η(i)

2ρ

T∑
t=1

∥∇t −Mt∥2∗ +
(D2

Φ + 2GΦPT )

η(i)

≤ η∗

2ρ

T∑
t=1

∥∇t −Mt∥2∗ +
2(D2

Φ + 2GΦPT )

η∗

By plugging the optimal learning rate of Theorem 2 for η∗, we have:

T∑
t=1

f̃t(ut)−
T∑

t=1

f̃t(y
(i)
t ) ≤ 3

√√√√ (D2
Φ + 2GΦPT )

2ρ

T∑
t=1

∥∇t −Mt∥2∗

10



And using Lemma 3:

T∑
t=1

f̃t(ut)−
T∑

t=1

f̃t(y
(i)
t ) +

T∑
t=1

f̃t(y
(i)
t )−

T∑
t=1

f̃t(yt)

=

T∑
t=1

f̃t(ut)−
T∑

t=1

f̃t(yt)

≤ 3

√√√√ (D2
Φ + 2GΦPT )

2ρ

T∑
t=1

∥∇t −Mt∥2∗ +
c
√
2T lnN

2
,∀ut ∈ Y
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