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Abstract

Trial-and-error is reinforcement learning’s core idea. The success of the trial-and-error learning

hinges on the assumption that each trial would lead to feedback. As a result, the feedback is used

to improve the quality of decisions taken. The assumption that decision makers receive feedback

for all their actions at all times does not necessarily translate to real-world scenarios. For example,

a human observer may not always be able to provide rewards, a sensor to observe rewards may be

limited or broken, or rewards may be unavailable during deployment. Monitored Markov decision

processes (Mon-MDPs) have been proposed as a framework for sequential decision making where

rewards could be unavailable, or in other words, unobservable to the decision maker. In this thesis,

we consider Mon-MDPs. We revisit Mon-MDPs’ model of interaction and the objective of decision

makers in this model. Then, we introduce our main contribution, the monitored model-based

interval estimation with exploration bonus (Monitored MBIE-EB) algorithm. Monitored MBIE-

EB is the first algorithm in Mon-MDPs that provably admits a polynomial sample complexity. This

polynomial sample complexity is to achieve a minimax-optimal policy in the worst-case. Monitored

MBIE-EB pays attention to the structure of the problem at hand and furthermore is able to benefit

from prior knowledge about the problem. Prior knowledge about the observability of the rewards is

important. We show that Monitored MBIE-EB is able to fully exploit this knowledge, if available.

Also, we show Monitored MBIE-EB is also capable of finding the minimax-optimal policy in the

absence of privileged prior knowledge. Empirically, we demonstrate the superior performance of

Monitored MBIE-EB compared to Directed Exploration-Exploitation, the state-of-art algorithm in

Mon-MDPs, on four dozen finite domains.
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Chapter 1

Introduction

Imagine purchasing a plant for your apartment that requires regular watering. When you are

available, you enjoy taking care of it, ensuring all its needs, including watering, are met. But

during the plant’s life span, you might sometimes be unavailable, such as when you are away from

home for an extended amount of time. In such cases, you might preemptively buy a robot to do

this task continuously on your behalf. After a training period, where you reward or punish the

robot based on its performance, eventually you train the robot to water the plant reliably. This

gives you confidence that the plant’s well-being is secure, even in your absence, and you may even

consider adding more plants to your care, trusting the robot to maintain them all.

At some point, an occasion might arise in which you are not at home, and the robot must

interact with a novel item or plant, in this case, that was not encountered during training. When

this happens, what should the robot do? How should the robot adapt if it knows you are away

compared to being unaware? Additionally, if the robot needs to navigate between rooms, but not

know the exact paths in your absence, how can it reach a plant? How can the robot pay attention

to the cost of having your supervision?

In this thesis, we aim to answer the above questions in the context of sequential decision-making

and agent behavior. We model the concept of imperfect knowledge about the quality of outcomes

and formalize the desired behavior (in scenarios such as the plant-watering robot). We then in-

troduce monitored model-based interval estimation with exploration bonus (Monitored MBIE-EB)

algorithm that adopts this behavior with high probability in finite time. Finally, we demonstrate the

empirical advantage of Monitored MBIE-EB over Directed Exploration-Exploitation, a previously

developed algorithm for this setting.
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1.1 Sequential Decision-Making

In this section, we introduce the components of a single decision maker’s decision-making process.

This introduction provides the concepts needed to study which decisions should be taken when

knowledge of potential outcomes is imperfect. Also, we will visualize the example of the plant-

watering robot in Figure 1.1.

In this work, decision-makers are called agents. We study the decision-making procedure of an

agent with respect to the environment in which it interacts. In our plant-watering example, the

agent is the robot. The robot’s environment, consists of the apartment and the plants.

I should water the plants 
except the cactus!

Figure 1.1: This figure depicts the plant-watering robot scenario. The robot is responsible for
watering all the plants except the cactus on behalf of the owner, who is absent.

Agents observe information from the environment, such as the time of day or the dryness of

the plants in our example. An agent acts based on its observations—for example, watering a

dry plant or stopping when the plant is well-hydrated. To evaluate the quality of these possible

actions, agents receive a reward signal that either rewards or penalizes them based on their actions.

In our example, watering a dry plant is rewarded, while over-watering is penalized. Hence, the

agent’s goal is to maximize the accumulation of the reward they receive while interacting with

the environment [8]. Looking at Figure 1.1, the robot should water the small flower pot with a

single flower and the large pot with multiple flowers, but avoid watering the cactus. This behavior

maximizes the total reward the agent can obtain.

2



1.1.1 Learning When The Rewards Are Unobservable

In this section, we highlight one of the unrealistic assumptions that can be made when modeling

sequential decision-making: the reward is always observable by the agent. We then propose a slightly

more realistic alternative. The plant-watering robot scenario indicates the concept of learning

through trial and error. The robot is never shown exactly how to reach and water a plant; instead,

it follows what it computes to be the best course of action. Then, the agent should determine the

correct behavior from the reward signals it received for those actions. Provided a human is available

to provide feedback, the robot’s learning is possible. However, the robot’s reliance on the human’s

presence is quite limiting. Ultimately, the human bought the robot to handle the tasks for them,

giving them time to focus on other activities. Intuitively, one way to address this shortcoming is

for the robot to build an internal model of the relationship between actions and rewards, enabling

it to evaluate the quality of its own actions. This nearly provides the desired autonomy, but it is

not robust against possible unexpected events. For example, in our plan-watering scenario, some

unexpected events could include the noisy signal of the robot’s sensors leading it to the wrong

place, or a neighbor coming in to check on the plants and and puts the robot in the wrong room,

etc. Such changes will require self-evaluation of the robot, but how can the robot evaluate itself if

it has never experienced the new situation before?

The central difficulty in answering the above question is the degree of expected autonomy. For

example, one answer could be that the robot should turn itself off, an automated procedure could

inform a neighbor for help, etc. Although the randomness in the plant-watering scenario might seem

artificial, it is common because of the world’s natural stochasticity. For example, Andrychowicz

et al. [2] trained a robot arm only in the simulation to solve a Rubik’s Cube, which is a complex

task. After the training phase in the simulation, they test the learned behavior on an actual robotic

arm with no training during the deployment. However, they mention:

“A variety of randomizations are applied to the simulator, shrinking the reality gap

between the simulated environment and the physical world in order to learn a policy

that generalizes to reality.” [2]

The added randomization is only applicable if the real-world setup is exactly as designed. Similar

to the plant-watering situation, many challenges exist. For example, what if the learned policy

is tested on a slightly different robotic arm? Or if the Rubik’s Cube varies during testing? One

option is to enable the agent to continue learning during deployment. However, should experiment

designers be available at all times during this process? After all, the need for constant supervision

should be minimized.

On the other hand, even if agents are allowed to continually learn during their interaction with

the environment, their hardware may still produce faulty computations, e.g., in large-scale comput-

3



ing clusters, the proximity of circuit boards can introduce noise, leading to erroneous outputs [12].

Hence, it is reasonable to expect agents to learn continually, but they also should account for

unexpected events. The solution presented here is to encompass both of these desiderata. Agents

should pursue their goals (maximizing the accumulation of rewards) while avoiding the worst-

case possible outcome when encountering novel, unexpected situations. This is a design decision

appropriate for the worst-case scenario. Returning to our plant-watering example: when the agent

encounters an unfamiliar plant, it should water it a few times to gather feedback. If, after several

attempts, no reward (not even the constant numerical reward of zero) is received, the agent can

reasonably infer that the plant is a cactus and should stop watering it. This behavior is illustrated

in Figure 1.2. We argue that this is a reasonable strategy, provided that watering a cactus results

in the worst possible outcome. Under this assumption of considering the worst case for unknown

outcome, the agent continues watering all known plants and adopts a cautious approach toward

unfamiliar ones. If the unknown plant is indeed a cactus, the agent has already avoided harm by

stopping early. If it is not a cactus, the agent’s behavior is suboptimal—but not catastrophic.

I've tried LEFT 
many times, but 
it seems I will 
never observe 
its outcome?!

(a) LEFT’s outcome cannot be
observed and will always be un-
known.

The outcome 
could be a 
cactus! I will 
not try LEFT 
anymore!

(b) The agent assumes the worst
(cactus) for LEFT.

Maybe LEFT’s 
outcome is not a 
cactus, but I will 
never know. 
Better safe 
than sorry!

(c) The agent would be pes-
simistic even if LEFT’s true out-
come is not the cactus.

Figure 1.2: An example of dealing with unknown outcomes. (a) The agent has to choose between
LEFT, UP, and RIGHT. RIGHT leads to a cactus, UP to a small flower pot, and LEFT to either a cactus
or a big flower pot (more valuable than a small flower pot), but the agent can never observe the
result of executing LEFT. (b) After sufficient attempts, the agent excludes LEFT because its outcome
is unknown, and the agent assumes the worst. (c) LEFT is ruled out even though it could actually
yield the big flower pot. However, since this cannot be known, acting pessimistically complies with
our suggestion when dealing with unknown outcomes. Ultimately, the agent balances exploration
with the risk that some actions may offer no reward. Thus, after enough exploration, the agent
assumes the worst if the action outcome is still unknown.

We have described the plant-watering robot example, which has been assigned to water plants

except cacti. Now, there is a need to study how the robot’s behavior should be formally studied and

defined. Reinforcement learning (RL) is used to study how agents make decisions. In one typical

4



form, known as Markov decision processes (MDPs), RL assumes that rewards are observable for

every action, because they specify the goals. However, another formalization, monitored Markov

decision processes (Mon-MDPs), accounts for the possibility of unobservable rewards. Despite the

Mon-MDPs’ existence, no algorithms have been designed yet to guide agents toward the desired

behavior, while paying attention to the Mon-MDP’s structure at hand. In this thesis, we aspire to

fill this gap.

1.2 Contributions

We now summarize the key contributions of this thesis, we:

• define the minimax-optimality in Mon-MDPs replacing the notion of MDPs’ optimality.

• present Monitored MBIE-EB, the first model-based minimax-optimal method for Mon-MDPs.

• prove the polynomial time sample complexity of Monitored MBIE-EB.

• show that the dependence of the Monitored MBIE-EB’s sample complexity on the stochas-

ticity of observing the reward in Mon-MDPs is essentially unimprovable.

• demonstrate the superior performance of Monitored MBIE-EB compared to Directed-Exploration-

Exploitation, the previous state-of-the-art (SOTA) algorithm, on over four dozen finite do-

mains. We show more dramatic results when the dynamics of how the agent can or cannot

observe the reward is known apriori.

1.3 Organization

To study sequential decision-making with unobservable rewards, in Chapter 2, we revisit reinforce-

ment learning (RL) that formally models the sequential decision making. In particular, we start

with the formulation of Markov decision processes (MDPs) and review the necessary topics studied

under this formulation. Then, we introduce monitored Markov decision processes (Mon-MDPs) to

extend MDPs to scenarios in which the reward could be unobservable. We formalize the minimax-

optimality as the objective on Mon-MDPs. In Chapter 3, we introduce Monitored MBIE-EB that

accomplishes the minimax-optimality in Mon-MDPs. We prove the polynomial sample complex-

ity of Monitored MBIE-EB. Finally, in Chapter 4, we show the superior empirical performance of

Monitored MBIE-EB compared to the previous SOTA method on some finite domains.
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Chapter 2

Background

In this chapter, we introduce the background needed to study sequential decision-making when the

agent might not receive the rewards of its actions.

2.1 Markov Decision Processes

In this section, we revisit the MDP definition as the building block of studying sequential decision-

making with long-term effects. Throughout this thesis, we only focus on finite MDPs. A finite MDP

is represented by a tuple M = ⟨S,A,R, p⟩ [43, 48]. S is the finite set of the environment’s states.

Each state contains all the necessary information the agent needs to know about the environment.

A is the finite set of actions the agent can apply in each of the environment’s states, R ⊂ R
is the finite set of rewards the agent receives from the environment upon taking its actions, and

p : S ×A → ∆(R×S)1 is the transition dynamics. In particular, p (s′, r′|s, a) is the probability of

seeing the reward r′ ∈ R and the next state s′ ∈ S given the action a ∈ A was taken in state s ∈ S.

In MDPs, to choose its action, it is sufficient to assume the agent follows a memoryless policy

π : S → ∆(A)2. Following π in M results in a stochastic process S0, A0, R1, S1, A1, R2, . . . that

induces a probability measure P over some sample space Ω. In the stochastic process S0, A0, R1, S1,

A1, R2, . . . , we have that S0, S1, · · · : Ω → S, A0, A1, · · · : Ω → A, and R1, R2, · · · : Ω → R, such
that for any t ≥ 0, s0, s1, . . . st+1 ∈ S, a0, a1, . . . at ∈ A, and r0, r1, . . . rt+1 ∈ R, it holds

P (St+1 = st+1, Rt+1 = rt+1|S0 = s0, A0 = a0, R1 = r1, . . . St = st, At = at) = p(st+1, rt+1 | st, at),
(2.1)

1∆(X ) denotes the probability distribution over the set X .
2Memoryless policies only use the current environment state to make a decision. Hence, π is a mapping from the

state space.
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known as the Markov property. Figure 2.1 illustrates the agent-environment interaction in MDPs.

Environment

Agent

Figure 2.1: MDPs. The agent takes an action A, and in turn, it receives the state of the environment
S and the reward R corresponding to the taken action. For the sake of clarity, we have omitted
the dependence on time from the notation.

2.1.1 Learning Objective in MDPs

MDPs model the interaction between the agent and the environment. In this section, we revisit

the agents’ goal during this interaction. One criterion to express the agents’ goal, which follows a

policy π in M , is maximizing the expected sum of discounted rewards [43], where 0 ≤ γ < 1 is the

discount factor. This leads to the definition of the state-value and the action-value functions, and

the optimal policy. Let E denote the expectations we get with respect to P. Then, the state-value

function of a policy π in MDP M is denoted by V π
M where:

V π
M (s) := E

⎡⎣∑︂
k≥t

γk−tRk+1

⃓⃓⃓⃓
⃓⃓St = s

⎤⎦ , ∀s ∈ S. (2.2)

Similarly, the action-value function of a policy π in MDP M is denoted by Qπ
M where:

Qπ
M (s, a) := E

⎡⎣∑︂
k≥t

γk−tRk+1

⃓⃓⃓⃓
⃓⃓St = s,At = a

⎤⎦ , ∀s, a ∈ S ×A. (2.3)

For a memoryless policy π, the following relation between V π
M (s) and Qπ

M (s, a) holds:

V π
M (s) =

∑︂
a

π(a | s)Qπ
M (s, a), ∀s ∈ S, (2.4)

i.e., the state-value of a policy is the mean of its action-value, when only the randomness in the

policy is considered. Having defined the state-value and action-value functions, the agent’s goal is

7



defined as finding a policy π∗, called an optimal policy, whose state-value function in M satisfies:

V π∗
M⏞⏟⏟⏞

=:V ∗
M

(s) = max
π∈Π

V π
M (s), ∀s ∈ S, (2.5)

where Π is the set of all policies in M .

2.1.2 Bellman Optimality Equation

The agent’s goal was defined as finding π∗. Now, we revisit the Bellman optimality equation as one

way of finding π∗. To introduce the Bellman optimality equation, define the immediate expected

reward r(s, a) and next-state transition probability p(· | s, a) for taking action a at state s as:

r(s, a) =
∑︂

r′∈R,s′∈S
r′ · p

(︁
s′, r′

⃓⃓
s, a
)︁
, p

(︁
s′
⃓⃓
s, a
)︁
=
∑︂
r′∈R

p
(︁
s′, r′

⃓⃓
s, a
)︁
, ∀s′ ∈ S.

Then, V ∗
M satisfies the following recursive equation known as the Bellman optimality equation [49]:

V ∗
M (s) = max

a

{︄
r(s, a) + γ

∑︂
s′

p
(︁
s′
⃓⃓
s, a
)︁
V ∗
M (s′)

}︄
, ∀s ∈ S. (2.6)

The utility of the Bellman optimality equation is that it is shown [49] by recursively applying this

equation (when viewed as a mapping from R|S| to R|S|) on any initial value, V ∗
M can be found up

to predefined accuracies. Using the Bellman optimality equation, any memoryless policy π that

π(s) ∈ arg max
a

{︄
r(s, a) + γ

∑︂
s′

p
(︁
s′
⃓⃓
s, a
)︁
V ∗
M (s′)

}︄
, ∀s ∈ S, (2.7)

is optimal [43]. Hence, Equation (2.7) with Equation (2.4) imply the following results:

Q∗
M (s, a) = r(s, a) + γ

∑︂
s′

p
(︁
s′
⃓⃓
s, a
)︁
V ∗
M (s′), (2.8)

V ∗
M (s) = max

a
Q∗

M (s, a),

π∗(s) = arg max
a

Q∗
M (s, a).

One approach to identify π∗ is constructing action-values QM (s, a)i for all state-action pairs (s, a),

where i ∈ {0, 1, . . . } and QM (s, a)0 is chosen arbitrarily. Then perform the update, QM (s, a)i+1 =

r(s, a) + γ
∑︁

s′ p (s
′|s, a)maxa′ QM (s′, a′)i. Then as i → ∞, QM (s, a)i → Q∗

M (s, a) almost surely.

This approach is known as the value iteration [48], which makes QM (s, a)i converge to Q∗
M (s, a) at

the geometric rate γi. In practice, to get an estimate QM (s, a)i, such that QM (s, a)i ≥ Q∗
M (s, a)−ϵ

8



for ϵ > 0, it is sufficient to perform value iteration only for i ∈ O
(︂
(1− γ)−1 ln ( 1

ϵ(1−γ))
)︂

itera-

tions [30], where it is assumed that min{r′ : r′ ∈ R} = 0 and max{r′ : r′ ∈ R} = 1.

2.2 Model-Based Interval Estimation with Exploration Bonus

In this section, we revisit Model-Based Interval Estimation with Exploration Bonus (MBIE-EB) [13,

47, 55] that yields a policy satisfying the Bellman optimality equation. The fundamental challenge

for the agent is that Q∗
M , as defined in Equation (2.8), assumes the exact model of the immediate

expected reward r and next-state transition probabilities p for all state-actions is known. However,

neither r nor p is known to the agent in advance, and the agent can only estimate them during

interaction. Using samples to estimate true values leads to using maximum likelihood estimation

(MLE) to construct r̄ as an estimate of r and p̄ as an estimate of p. Empirical models r̄ and p̄ for

a fixed state-action (s, a), are:

r̄(s, a) =
1

N(s, a)

N(s,a)∑︂
i=1

Ri, p̄
(︁
s′
⃓⃓
s, a
)︁
=

1

N(s, a)

N(s,a)∑︂
i=1

I
{︁
S′
i = s′

}︁
, ∀s′ ∈ S. (2.9)

To compute r̄ and p̄ above, N(s, a) is the number of times that (s, a) has been visited, Ri and

S′
i are the immediate reward and the next-state after the ith visit for i ∈ [N(s, a)], and I is the

indicator function returning one if the predicate of its argument is true, otherwise zero. Note that

r̄ and p̄ are sample estimates and are not necessarily equal to their true quantities. When they are

used in Equation (2.8), they result in the following equation for (s, a):

Q̄∗
M (s, a) := r̄(s, a) + γ

∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁
V ∗
M (s′). (2.10)

However, the agent cannot act according to Q̄∗
M , as defined in Equation (2.10), because V ∗

M is also an

unknown quantity. The idea of optimism in the face of uncertainty (OFU) turns Equation (2.10)

into an equation that does not have any unknown terms, and guides the agent toward state-

action where r̄ and p̄ are the most inaccurate (the fewest number of times visited). MBIE-EB is

an algorithmic instantiation of OFU. It states that since the rewards are bounded, without loss

of generality between zero and one, V ∗
M is deterministic and E

[︁
Q̄∗

M (s, a)
]︁
= Q∗

M (s, a) ≤ 1
1−γ ,

Chernoff-Hoeffding’s inequality guarantees with probability at least 1− δ1:

⃓⃓
Q̄∗

M (s, a)−Q∗
M (s, a)

⃓⃓
≤ (1− γ)−1

√︄
ln(1/δ1)

2N(s, a)
. (2.11)
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Hence, with probability at least 1 − δ1
2 (to split the failure probability equally for the upper and

lower bounds of the absolute value), it holds that:

Q̄∗
M (s, a)−Q∗

M (s, a) ≥ −(1− γ)−1

√︄
ln(2/δ1)

2N(s, a)

Q̄∗
M (s, a) + (1− γ)−1

√︄
ln(2/δ1)

2N(s, a)⏞ ⏟⏟ ⏞
=:Q∗∗

M (s,a)

≥ Q∗
M (s, a),

where Q∗∗
M represents an optimistic (bigger than the optimal) action-value function in M .

By showing that V ∗∗
M (s) = maxaQ

∗∗
M (s, a) ≥ V ∗

M (s) through induction for all states [13, 47], Q̄∗
M

is turned into Q∗∗
M that does not have any unknown quantities and the agent can be greedy with

respect to. Optimistic action-values, Q∗∗
M , satisfy the following:

Q∗∗
M (s, a) = r̄(s, a) + γ

∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁

V ∗∗
M (s′)⏞ ⏟⏟ ⏞

maxa′ Q
∗∗
M (s′,a′)

+(1− γ)−1

√︄
ln(2/δ1)

2N(s, a)
. (2.12)

However, care should be taken to use Q∗∗
M , as defined in Equation (2.12), in place of Q∗

M :

1. The condition V ∗∗
M (s) ≥ V ∗

M (s) should not remain in the limit. The agent should eventually

follow a policy π such that V π
M (s) ≥ V ∗

M (s) − ϵ, ∀s ∈ S, ϵ > 0. At the same time, optimism

is required for learning accurate models. Hence, MBIE-EB states that the agent should only

be optimistic until each state-action is visited at least m times, where m is the least number

of visits to learn near-accurate models. Lemmas 2.1, 2.2 and 2.3 quantify the order of values

that m should take to have near-accurate models. We refer the reader to Strehl and Littman

[47] for their proofs.

Lemma 2.1 bounds the difference between the action-value of a fixed policy π in two MDPs

M1 and M2 in terms of how much M1 and M2 are different from each other. It is known as

the Simulation Lemma [23, 47], and it is useful in proving Lemma 2.2.

Lemma 2.1 (Strehl and Littman [47, Lemma 1]). Let M1 = ⟨S,A,R1, p1⟩ and M2 =

⟨S,A,R2, p2⟩ be two MDPs with non-negative rewards bounded by rmax and 0 ≤ γ < 1.

If the following holds for all states and actions:

|r1(s, a)− r2(s, a)| ≤ φ1, ∥p1(· | s, a)− p2(· | s, a)∥1 ≤ φ2,

then for all state-action pairs, and deterministic stationary polices we have

|Qπ
1 −Qπ

2 | ≤
φ1 + γrmaxφ2

(1− γ)2
.
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MBIE-EB performs based on its sample estimates. Lemma 2.2 states that a fixed policy

exhibits similar action-values in two MDPs with comparable transition dynamics and expected

immediate rewards. Consequently, an agent achieves near-desired behavior by having accurate

estimates.

Lemma 2.2 (Strehl and Littman [47, Lemma 2]). Let M1 = ⟨S,A,R1, p1⟩ and M2 =

⟨S,A,R2, p2⟩ be two MDPs with non-negative rewards bounded by rmax ≥ 1 and 0 ≤ γ < 1.

Suppose the following inequalities hold for all state-actions

|r1(s, a)− r2(s, a)| ≤ φ1, ∥p1(· | s, a)− p2(· | s, a)∥1 ≤ φ2 .

For any 0 < ϵ ≤ rmax
1−γ and fixed policy π, there is a constant C, that if φ1 = φ2 = C ϵ(1−γ)2

rmax
,

then

|Qπ
1 −Qπ

2 | ≤ ϵ .

Lemma 2.3 specifies the number of visits to each state-action for MBIE-EB to have accurate

models.

Lemma 2.3 (Strehl and Littman [47, Lemma 5 and Theorem 1]). Let M = ⟨S,A,R, p⟩
and γ ∈ [0, 1). For τ = C ϵ(1−γ)2

rmax
, where C is specified in Lemma 2.2, there exists an m ∈

O
(︂
|S|
τ2

+ 1
τ2

ln |S||A|
τδ

)︂
= O

(︂
|S|

ϵ2(1−γ)4
+ 1

ϵ2(1−γ)4
ln |S||A|

ϵ(1−γ)2δ

)︂
such that |r̄(s, a)− r(s, a)| ≤ τ and

∥p̄(· | s, a)− p(· | s, a)∥1 ≤ τ with probability at least 1− δ hold for all at least m times visited

state-action pairs.

2. The failure probability δ1 in Equation (2.12) applies to a fixed (s, a), but it should account

for all state-actions until each is visited at least m times.

These two requirements are satisfied by specifying δ1 =
δ

|S||A|m where δ is the global failure probabil-

ity. With probability at least 1− δ, the following action-values are optimistic until all state-actions

are visited at least m times:

Q∗∗
M (s, a) = r̄(s, a) + γ

∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁
max
a′

Q∗∗
M (s′, a′) + (1− γ)−1

√︄
ln(2 |S| |A|m/δ)

2N(s, a)
. (2.13)

In summary, Q∗∗
M , in Equation 2.13, is the action-value that MBIE-EB’s policy is greedy with

respect to. Q∗∗
M , with high probability, converges to the optimal-action values Q∗ using only sample

estimates of the expected reward r̄ and dynamics p̄.
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2.3 Sample Complexity

In this section, we explain why MBIE-EB is appropriate for finding the optimal policy in finite

MDPs. The central goal of developing RL algorithms in MDPs is finding an optimal policy. Ideally,

it is desirable to develop algorithms that are not only effective in finding an optimal policy but

are also efficient in terms of number of samples they need. Such desideratum rules out asymptotic

algorithms such as ε-greedy [48] in favor of other algorithms exhibiting good finite-time performance.

One criterion to measure the efficiency of algorithms is measuring the number of time steps required

to find a near-optimal policy known as the sample complexity [23]. Inspired by the probably

approximately correct (PAC) framework [51] used to measure the efficiency of supervised learning

algorithms [56], the probably approximately correct MDP (PAC-MDP) framework [23, 28, 47]

provides a similar measure for RL algorithms.

Definition 1. An algorithm is PAC-MDP if, for any MDP M = ⟨S,A,R, p⟩ with discount factor

0 ≤ γ < 1 and δ, ϵ > 0, it finds an ϵ-optimal policy in M , in time polynomial to(︃
|S| , |A| , ln 1

δ
,
1

ϵ
,

1

1− γ
, rmax

)︃
.

Theorem 2.1 states that MBIE-EB is a PAC-MDP algorithm.

Theorem 2.1 (Strehl and Littman [47, Theorem 2]). Suppose ϵ and δ are two real numbers be-

tween 0 and 1 and M = ⟨S,A,R, p⟩ is any MDP with non-negative rewards bounded by rmax.

Let discount factor 0 ≤ γ < 1. There exist an input m = m
(︁
1
ϵ ,

1
δ

)︁
satisfying m

(︁
1
ϵ ,

1
δ

)︁
=

O
(︂

|S|
ϵ2(1−γ)4

+ 1
ϵ2(1−γ)4

ln |S||A|
ϵ(1−γ)2δ

)︂
, such that if MBIE-EB is executed on M and value iteration

is done every H ∈ O
(︂
(1− γ)−1 ln 1

ϵ1(1−γ)

)︂
steps for H iterations, then the following holds. Let πt

denote MBIE-EB’s policy at time t. With probability at least 1 − δ, V πt
M (St) ≥ V ∗

M (St) − ϵ is true

for all but ˜︁O (︂ |S|2|A|H
ϵ3(1−γ)5

)︂
= ˜︁O (︂ |S|2|A|

ϵ3(1−γ)6

)︂
time steps.

The main takeaway of Theorem 2.1 is that not only does MBIE-EB find a near-optimal policy

using only sample estimates of the reward function and the transition dynamics, but also finds the

near-optimal policy in polynomial time. Hence, MBIE-EB is efficient compared to methods that

find an optimal policy only asymptotically such as ε-greedy.

2.4 Monitored Markov Decision Processes

In the preceding sections, we explained the MDP formulation, the agents’ goal in MDPs, the

MBIE-EB algorithm that achieves the goal, and the polynomial sample complexity of MBIE-EB.

In this section, we argue against the constant availability of the reward function which can be an
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unrealistic assumption made in the MDP formulation. This argument motivates the introduction

of monitored Markov decision processes that addresses this limitation of MDPs to model scenarios

where the reward could be unavailable to the agent.

One central assumption in RL is that upon taking an action, the agent receives a reward. How-

ever, receiving the reward at all times may be an unrealistic assumption because an exogenous

entity can determine the reward to the agent such as humans [16, 31] or monitoring instrumenta-

tion [53]. In such settings, the assumption that the reward is available at all times is not reasonable

because of humans’ time constraint [41], hardware failure [7, 12, 17], or simply the inaccessibility of

rewards during deployment [2]. MDPs do not account for this possibility. They abstract away the

process that rewards the agent as being part of the environment. MDPs assume all the required

information, including the reward, is provided to the agent in response to its actions.

An alternative to an MDP is a partially observable Markov decision process (POMDP) [22].

The POMDP formulation relaxes the assumption that the agent receives full information from the

environment. POMDP expresses that in response to agent’s actions, the agent receives a vector of

observations O instead of the state and the reward. The observations O may or may not contain

enough information about the state of the environment that agent could base its decision on, and

the reward is just simply an element of O [48]. Despite the POMDPs’ existence, no single study in

the POMDP literature exists that investigates the partial observability of the reward [11, 19, 42, 46].

POMDP literature only include work that studied the partial observability of the environment state

due to imperfect perception of the agent, not due to unavailability of the process that determines

the reward. Figure 2.2 illustrates the agent-environment interaction is POMDPs.

Environment

Agent

Figure 2.2: POMDPs. The agent takes an action A, and in return it receives the vector of obser-
vations O. There is no explicit reward signal because it is one of the O’s entries. For the sake of
clarity, we have omitted the dependence on time from the notation.

On the other hand, the partial observability of the reward has been studied in the context of

RL from human feedback [24], active learning [27], options framework [32] and goal-conditioned

policies [14, 54]. Nevertheless, in none of these settings are there rewards that the agent only some-

times observes whose observability is predictable and is possibly controlled. Such as the possibility

of observing the reward upon turning the light on in a dark room or carrying an object. Conse-
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quently, inspired by the problem of partial monitoring [5], Parisi et al. [40] introduced monitored

Markov decision processes (Mon-MDP) in an attempt to explicitly bring the process that provides

the agent with the reward into the problem definition. The promise of the Mon-MDP formulation is

to adequately model partially observable or even never observable rewards. Therefore, Mon-MDPs

propose that the agent should also pay attention to how its actions might or might not impact its

ability to observe the reward, if possible at all. This idea encompasses not only settings that have

a specialized notion of partially observable rewards, but also generalizes all of them. Mon-MDPs

state that the reason rewards might be partially observable stems from a process that the agent

should account for. As a result, Mon-MDPs preserve the reward-providing process rather than

abstracting it away through the traditional concept of the environment. This explicitness with

respect to the reward-provider might lead to more efficient algorithms, but it surely leads to more

realistic algorithms than the ones that do not consider the unobservability of the reward at all.

In Mon-MDPs, in addition to the environment that is modeled by an MDP, the agent also

interacts with another MDP called the monitor. As examples, the monitor may represent a human

supervisor or monitoring instrumentation that are some of the common processes specifying the

reward to learning agents. As mentioned earlier, the monitor is an MDP thus its definition includes

a state space, an action space, a set of rewards and a transition function obeying the Markov

property. The agent interacts jointly with the monitor and the environment; therefore to distinguish

the quantities, spaces and mappings belonging to the environment or the monitor, we will use

superscripts e and m respectively. Let Sm denote the finite state space of the monitor, Am denote the

finite action space of the monitor, Rm denote the finite set of the monitor’s reward, and pm denote

the transition dynamics of the monitor. In Mon-MDPs pm : Sm ×Am × Se ×Ae → ∆(Sm ×Rm).

This dependence of pm on Se and Ae captures one aspect of the interplay between the monitor and

the environment. In Mon-MDPs, there also exists another mapping fm called the monitor function

(not to be confused with the monitor itself). fm : Re×Sm×Am →
(︂ ˆ︁Re ⊂ R

)︂
∪{⊥}. The monitor

function fm models what reward the agent gets to observe and ⊥ denotes a symbol when the agent

does not receive any numerical feedback in return to the its action. Finally, the joint representation

that includes the environment and the monitor comprises the finite joint state space S := Se×Sm,
the finite joint action space A := Ae ×Am, the finite joint set of rewards R := Re ×Rm, the joint

transition dynamics p := pe ⊗ pm, and the monitor function fm as a tuple M = ⟨S,A,R, p, fm⟩.

In Mon-MDPs, it is sufficient to assume the agent follows a memoryless policy π : S → ∆(A)
to choose its actions. Following π in M results in a stochastic process S0, A0, R1, S1, A1, R2, . . . ,

where Rt+1 = (Re
t+1, R

m
t+1), t ≥ 0. This policy induces a probability measure P over some sample

space Ω. In this sample space S0, S1, S2, · · · : Ω → S, A0, A1, A2, · · · : Ω → A, and R1, R2, R3 · · · :
Ω → R, and Markov property, Equation (2.1), holds. Note that S0, A0, R1, S1, A1, R2, . . . is the

true underlying stochastic process associated with the interaction, but the instead of Re
t+1 the agent

observes the output of fm. Let ˆ︁Re
t+1 be the output of fm at time step t, where ˆ︁Re

1,
ˆ︁Re
2, · · · : Ω →
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ˆ︁Re ∪ {⊥}, then Figure 2.3 illustrates the agent-environment-monitor interaction in Mon-MDPs.

Environment

Monitor

Agent

Figure 2.3: Mon-MDPs. The agent interacts not only with the environment, but also with the
monitor. Upon taking the joint action (Ae, Am), the agent receives the state of the environment Se

and the state of the monitor Sm. The monitor receives the environment reward Re, but instead of
passing it on, the monitor hands off ˆ︁Re to the agent. The agent also receives the monitor reward
Rm. For the sake of clarity, we have omitted the dependence on time from the notation.

2.4.1 Learning Objective in Mon-MDPs

Mon-MDPs model the interaction between the agent, the environment, and the monitor. In this

section, we formally revisit the agent’s goal during this interaction. The agent is expected to behave

optimally with respect to the environment and the monitor simultaneously, hence the objective

incorporates the maximization of the environment and monitor rewards’ sum. Let E denote the

expectations we get with respect to P. Then, using the criterion of maximizing the expected sum of

discounted rewards with the discounted factor 0 ≤ γ < 1, the state-value and action-value functions

of a policy π in Mon-MDP M are

V π
M (s) := E

⎡⎣∑︂
k≥t

γk−t
(︁
Re

k+1 +Rm
k+1

)︁⃓⃓⃓⃓⃓⃓St = s

⎤⎦ , ∀s ∈ S,

Qπ
M (s, a) := E

⎡⎣∑︂
k≥t

γk−t
(︁
Re

k+1 +Rm
k+1

)︁⃓⃓⃓⃓⃓⃓St = s,At = a

⎤⎦ , ∀s, a ∈ S ×A.

Note that even though the agent observes ˆ︁Re
k+1 in place of Re

k+1 for all k > 0, the state-value and the

action-value functions use Re
k+1. This is the crucial difference between MDPs and Mon-MDPs: the

immediate environment reward Re
k+1 is always generated by the environment, i.e., desired behavior

is well-defined. However, the monitor may “hide it” from the agent, possibly even always yielding
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“unobservable reward” ˆ︁Re
k+1 = ⊥ at all times k for some state-action pairs. For example, consider

a task where the reward is given by a human supervisor (the monitor): if the supervisor must leave,

the agent will not observe any reward; yet, the task has not changed, i.e., the human — if present

— would still give the same rewards. Also similar to MDPs, for memoryless policies we have

V π
M (s) =

∑︂
a

π(a | s)Qπ
M (s, a), s ∈ S, (2.14)

i.e., the state-value function is the expected action-value function under the policy’s randomness.

The use of the underlying environment reward instead of the reward that the agent actually

gets to see could impose serious problems on the agent’s learning. Note that the definition of fm

does not restrict this function in terms of what real values it should return, if at all ( ˆ︁Re could

be any measurable subset of real numbers). Thus, to rule out pathological cases (such as whenˆ︁Re
k+1 = −Re

k+1), the monitor function fm is assumed to be truthful.

Definition 2 (Parisi et al. [40, Property 3]). fm is truthful, if for t ≥ 0, ˆ︁Re
t+1 ∈

{︁
Re

t+1,⊥
}︁
.

A truthful monitor guarantees the environment reward would not be observed, unless it is equal

to the true environment reward. Therefore, if the agent’s goal, similar to Section 2.1.1, is finding

a policy π∗ such that V π∗
M (s) = maxπ′ V π′

M (s) for all joint states, in cases that ˆ︁Re
t+1 = ⊥ at all

time steps for a particular environment state-action, finding π∗ is impossible. This impossibility

is because the agent would never and under no circumstances observe the environment reward.

Even if the monitor shows the environment reward a finite number of times, it is impossible to find

π∗ almost surely. In such cases that the monitor does not reveal the reward for all environment

state-action infinitely often, it is said that the monitor is non-ergodic, otherwise ergodic.

Definition 3 (Parisi et al. [40, Property 2]). fm is ergodic if, under infinite exploration, it re-

turns a real value infinitely often for every environment state-action pair, i.e., ∀(se, ae) ∈ Se ×
Ae, ∃(sm, am) ∈ Sm ×Am such that for s := (se, sm) and a := (ae, am) the following holds:

P
(︃
lim sup
t→∞

ˆ︁Re
t+1 ̸= ⊥

⃓⃓⃓⃓
St = s,At = a

)︃
> 0.

Therefore, the traditional notion of optimality cannot be extended to Mon-MDPs when the

monitor is non-ergodic, as optimality becomes unattainable in such cases. Parisi et al. [40] called

such Mon-MDPs unsolvable. Intuitively, Parisi et al. [40] argued if the agent can never know that

a certain state-action yields the highest (or lowest) environment reward, then the agent can never

learn to visit (or avoid) that state-action. Nonetheless, assuming every environment reward is

observable (sooner or later) is a stringent condition, not suitable for real-world tasks — reward in-

strumentation may have limited coverage, human supervisors may never be available in the evening,
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or training before deployment may not guarantee full state coverage. Hence, Parisi et al. [40] in-

troduced a minimax-optimal objective that coincides with finding an optimal policy in solvable

Mon-MDPs. Additionally, minimax-optimality empowers the agent to find an alternative policy to

the optimal policy in unsolvable MDPs.

When the agent is interacting with a Mon-MDP with a non-ergodic function, there could be at

least one environment state-action such that ˆ︁Re
t+1 associated with that is always ⊥. Thus, from

the agent’s perspective, there may be finitely many possible Mon-MDPs it could be interacting

with. Each of these possible Mon-MDPs is associated with one distinct element of Re. Because

any rewards could be the true underlying environment reward that is obscured by ⊥. Therefore,

the agent is facing a set of possible Mon-MDPs that it cannot distinguish them from each other.

Let [M ]I be such a set (formal definition in Appendix A). If M is solvable, all environment rewards

can be observed infinitely-often, thus [M ]I = {M}. Otherwise, from the agent’s perspective, there

are possibly finitely-many Mon-MDPs in [M ]I. Let M↓ be the worst-case Mon-MDP, i.e., the one

where all never-observable rewards are remin = −remax = −max{|r′| : r′ ∈ Re} (without loss of

generality and to reduce the clutter in the theoretical part of this work, assume remax = 1):

M↓ ∈ arg min
M ′∈[M ]I

reM ′(se, ae), ∀(se, ae) ∈ Se ×Ae, (2.15)

where reM ′ is the expected environment reward in Mon-MDP M ′. In words, Equation (2.15) states

that M↓ is a Mon-MDP whose expected environment reward is minimized over all Mon-MDPs

indistinguishable from M . Then, the objective in Mon-MDPs is finding a minimax-optimal policy

π in M as the optimal policy of the worst-case Mon-MDP the agent could possibly be facing, i.e.,

V π
M (s) = max

π′∈Π
V π′
M↓

(s), ∀s ∈ S. (2.16)

where Π is the set of all policies in M (and M↓). We denote a minimax-optimal policy by π∗
↓ and its

corresponding state-value function with V ∗
↓ . IfM is solvable then [M ]I = {M}, and Equation (2.16)

and Equation (2.5) become equivalent, i.e., the minimax-optimal policy is simply the optimal policy.

Minimax-optimality advocates taking a pessimistic approach. Pessimism has already been sug-

gested in the context of batch RL — where the agent cannot interact with the environment and has

only access to static dataset— when the coverage of the offline dataset is insufficient [10, 21, 26, 44],

online RL when models are imperfect [20] or the reward function is imprecise [45], safe RL when

safety constraints impacts the exploration [1], and robotics to exercise caution [52].
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2.4.2 Solutions for Mon-MDPs

We have defined the agent’s goal as finding a policy that holds in Equation (2.16). In this section,

we concisely revisit the Bellman optimality equation for Mon-MDPs that lays the ground for finding

the minimax-optimal policies. Let re(se, ae) be the expected environment reward, rm(sm, am) be

expected monitor reward, and p (s′|s, a) be joint next-state transition probability for the joint state-

action (s, a)≡(se, sm, ae, am). Define Et to be the event where there exits a monitor state-action

(sm0 , a
m
0 ) such that Et =

{︂ ˆ︁Re
t+1 ̸= ⊥

⃓⃓⃓
Se
t = se, Sm

t = sm0 , A
e
t = ae, Am

t = am0

}︂
, i.e., the immediate en-

vironment reward is observed upon taking the joint action (ae, am0 ) at the joint state (se, sm0 ) at

time step t. then

re(se, ae) =

⎧⎨⎩
∑︁

(re◦,r
m
◦ )∈R,s′∈S re◦ · p (s′, (re◦, rm◦ )|s, a) , if P (lim supt→∞ Et) > 0;

rmin = −rmax, otherwise,

rm(sm, am) =
∑︂

(re◦,r
m
◦ )∈R,s′∈S

rm◦ · p
(︁
s′, (re◦, r

m
◦ )
⃓⃓
s, a
)︁
,

p
(︁
s′
⃓⃓
s, a
)︁
=
∑︂
r′∈R

p
(︁
s′, r′

⃓⃓
s, a
)︁
.

Then, similar to MDPs, it can be shown that V ∗
↓ satisfies the following Bellman optimality equation,

V ∗
↓ (s) = max

a

{︄
re(se, ae) + rm(sm, am) + γ

∑︂
s′

p
(︁
s′
⃓⃓
s, a
)︁
V ∗
↓ (s

′)

}︄
. (2.17)

Therefore, similar to MDPs, for any initial value, iterative application of the value iteration con-

verges to V ∗
↓ . The minimax-optimal state-value V ∗

↓ defined in Equation (2.17) with Equation (2.14)

that shows the relationship between state-value and action-value functions, immediately results in

Q∗
↓(s, a) = re(se, ae) + rm(sm, am) + γ

∑︂
s′

p
(︁
s′
⃓⃓
s, a
)︁
V ∗
↓ (s

′), (2.18)

V ∗
↓ (s) = max

a
Q∗

↓(s, a),

π∗(s) = arg max
a

Q∗
↓(s, a).

However, no prior work similar to MBIE-EB exists that learns models of re, rm, and p to perform

value iteration and find π∗
↓ associated with Q∗

↓. All of the previous work used the ε-greedy explo-

ration strategy to learn re and then directly estimated Q∗
↓ without learning rm or p [39, 40]. They

all considered only Mon-MDPs with an ergodic monitor function. Hence, in those work’s settings

π∗
↓ is equal to π∗. This means previous work were only concerned with solvable Mon-MDPs that,

as was mentioned before, do not highlight the power of Mon-MDPs. The power of Mon-MDPs is to

model scenarios that the agent might never get feedback for particular state-actions. Hence, previ-

18



ous work did not need their agents pursue the notion of minimax-optimality instead the traditional

optimality. This simplification undermined the need for Mon-MDPs’ introduction.

2.5 The Baseline: Directed Exploration-Exploitation

In this section, we describe Directed-Exploration-Exploitation (Directed-E2) [39] as the baseline

algorithm we use in our experiments. Parisi et al. [39] showed that Directed-E2 outperforms con-

ventional exploration strategies including ε-greedy, pure optimistic initialization, ε-greedy with

count-based bonus [6], ε-greedy with upper confidence bound (UCB) bonus [3, 29], and ε-greedy

with long-term UCB [38] on 48 finite Mon-MDPs. Directed-E2 is the most performant algorithm on

Mon-MDPs developed so far. It uses two estimates. The first is the ordinary action-values that uses

a reward model, similar to Equation (3.1) in place of the immediate environment reward. However,

Directed-E2 does not use the pessimistic part of Equation (3.1). This reward model sets the agent

free from the partial observability of the environment reward once the reward model is learned. The

second action-value tries to maximize the successor representations. This successor representations

maximizer denoted by Ψ, is dubbed as visitation-values. Directed-E2 uses visitation-values for ex-

ploration. It uses visitation-values to keep the visitation of every joint state-action in a comparable

range guaranteeing that every state-action is visited sufficiently. Consequently, since Directed-E2

visits every state-action infinitely-often, every knowable quantity can be learned. In the limit of

infinite exploration, Directed-E2 becomes greedy with respect to the task respecting action-values

for maximizing the expected of sum of discounted rewards. The intensity of trying to keep the

visitation counts in the same order is determined by the hyperparameter β̄ > 0; the lower β̄ is,

the more frequently the agent tries to visit the least visited state-action. Algorithm 1 shows the

Directed-E2’s pseudocode.

Algorithm 1 Directed-E2

1: t = 0 // Total time steps

2: for episodes k := 1, 2, . . . do
3: for steps h := 1, 2, . . . do
4: (sg, ag) = argmins,aN(s, a)

5: βt =
log t

N(sg,ag)

6: if βt > β̄ then
7: Ah = argmaxaΨ(a | Sh, s

g, ag) // Explore

8: else
9: Ah = argmaxaQ(Sh, a) // Exploit

10: t := t+ 1
11: Perform action Ah

In summary, Directed-E2 at each time step first ensures that all state-actions’ visitation are
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comparable. If this condition holds, Directed-E2 acts greedy with respect to action-values that

maximize the accumulation of discounted rewards. In summary, in this chapter we started by

introducing MDPs as the traditional model to formalize the agent-environment interaction. We

revisited the agents’ goal in MDPs as finding a memoryless deterministic policy maximizing the

state-value function. We briefly discussed the Bellman optimality equation which gives rise to

the value iteration as an iterative procedure to find an optimal policy. However, the Bellman

optimality equation assumes having access to the true model of the environment. To address this

unrealistic assumption, we revisited MBIE-EB. We explained that sample complexity is one of the

properties to measure the efficiency of algorithms. MBIE-EB guaranteed with high-probability

(using empirical models) near-optimal policies can be found with polynomial sample complexity.

Then, we introduced Mon-MDPs that formalize the interaction of the agent not only with the

environment but also with the monitor. The monitor represents the process that provides the

agent with the reward. We discussed that due to potential unavailability of the monitor, the

agent might be unable to receive reward for some state-actions. This inaccessibility to the reward

made the notion of optimality in MDPs inapplicable in Mon-MDPs. As a results, we introduced

the notion of minimax-optimality for Mon-MDPs. We defined a minimax-optimal policy for any

unobserved reward, assumes the minimum possible value. Finally, while revisiting Directed-E2 as

the SOTA algorithm in Mon-MDPs, we pointed out that, no algorithm similar to MBIE-EB exits

for Mon-MDPs.
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Chapter 3

Methodology

In this chapter we introduce Monitored MBIE-EB as an extension of the MBIE-EB’s idea to Mon-

MDPs. Further, we extend the notion of PAC-MDP to PAC-Mon-MDP to specify the sample

complexity of Monitored MBIE-EB.

3.1 MBIE-EB in Mon-MDPs

Since MBIE-EB uses MLEs to build its models, in order to extend the idea of MBIE-EB to Mon-

MDPs, in this section, we first define models in Mon-MDPs. Then, we introduce appropriate

bonuses that would extend MBIE-EB to Mon-MDPs. Remember from Equation (2.18), in Mon-

MDPs the minimax-optimal action-value for a fixed joint state-action (s, a) ≡ (se, sm, ae, am) is

Q∗
↓(s, a) = re(se, ae) + rm(sm, am) + γ

∑︂
s′

p
(︁
s′
⃓⃓
s, a
)︁
V ∗
↓ (s

′).

Define N(se, ae), N(sm, am), and N(s, a) as the number of times the environment reward at (se, ae)

has been observed, the number of times the monitor reward at (sm, am) has been observed, and the

number of times the joint state-action (s, a) had been visited. The MLEs of re, rm and p are

r̄e(se, ae) =

⎧⎨⎩ 1
N(se,ae)

∑︁N(se,ae)
i=1 Re

i , N(se, ae) ̸= 0,

remin = −remax, otherwise,
(3.1)

r̄m(sm, am) =
1

N(sm, am)

N(sm,am)∑︂
j=1

Rm
j ,

p̄
(︁
s′
⃓⃓
s, a
)︁
=

1

N(s, a)

N(s,a)∑︂
k=1

I
{︁
S′
k = s′

}︁
, ∀s′ ∈ S,
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where Re
i , R

m
j , and S′

k are the ith observed immediate environment reward, the jth observed im-

mediate monitor reward and the next joint state after the kth visit. I is the indicator function

returning one if the predicate of its argument is true and zero otherwise. These MLEs results in

following sample estimate of Q∗
↓(s, a) denoted by Q̄∗

↓(s, a),

Q̄∗
↓(s, a) := r̄e(se, ae) + r̄m(sm, am) + γ

∑︂
s′

p̄(s′ | s, a)V ∗
↓ (s

′).

In MDPs, for a fixed (s, a) the expected immediate reward r(s, a) and the discounted expected

next-state’s value γ
∑︁

s′ p(s
′ | s, a)V ∗(s′) are both mappings from the same space, S ×A. However,

in Mon-MDPs the expected immediate environment reward re(se, ae), the expected immediate

monitor reward rm(sm, am), and γ
∑︁

s′ p(s
′ | s, a)V ∗

↓ (s
′) are all mappings from different input spaces.

re(se, ae) is a mapping from the environment state-action space, rm(sm, am) is a mapping from the

monitor state-action space, and γ
∑︁

s′ p(s
′ | s, a)V ∗(s′) is a mapping from the joint state-action

space. As a result, empirical counts for each of these mappings possibly increase at a different rate.

We cannot bound the deviation of Q̄∗
↓(s, a) from its expected value Q∗

↓(s, a) by a single application

of the Chernoff-Hoeffding’s bound as we did in Equation (2.11). Nevertheless, using a union bound

argument, we will show later the required optimism in Q∗∗
↓ (s, a), which is the optimistic action-

values analogous to Equation (2.13), defined in Equation (3.2), with probability at least 1−δ holds.

In Equation (3.2), m is the least number of samples required per state-action until their MLEs are

sufficiently close to their true values

Q∗∗
↓ (s, a) = r̄e(se, ae) + r̄m(sm, am) + γ

∑︂
s′

p̄(s′ | s, a)V ∗∗
↓ (s′)+

βe√︁
N(se, ae)

+
βm√︁

N(sm, am)
+

β√︁
N(s, a)

, (3.2)

where

V ∗∗
↓ (s′) = max

a′
Q∗∗(s′, a′), βe =

√︄
2 ln

(︃
12 |S| |A|m

δ

)︃
, βm =

√︄
2 ln

(︃
12 |S| |A|m

δ

)︃
, and

β =
2γ

1− γ

√︄
2 ln

(︃
12 |S| |A|m

δ

)︃
.

In summary, we introduced models r̄e, r̄m, p̄, and bonuses which extends MBIE-EB to Mon-MDPs.
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3.2 Observation Stage

MBIE-EB directly uses optimistic initial values to cover cases that the visitation count N(s, a) is

zero for state-action (s, a). However, incorporating r̄e defined in Equation (3.1) into Q∗∗
↓ , defined

in Equation (3.2), hinders the optimism required for Q∗∗
↓ . Because when the count N e(se, ae) is

zero, the pessimistic value of −remax is used, not the optimistic initial values. For example, back

to our plant-watering robot example in Figure 1.1, if the robot waters a large flower pot (which

is the correct action) during the training but due to some circumstances the owner cannot give

the reward to the robot, the robot becomes prematurely pessimistic about watering the large

flower pot. Therefore, we want the robot to explore more to ensure that it will be given feedback

infinitely-often, not based on a random one-off event.

In this section, we describe our solution to this challenge. Algorithms based on the principle

of optimism in the face of uncertainty (OFU) [4, 9, 18, 47] prove the maintenance of the optimism

through induction. The base case of the induction, which corresponds to having zero counts, is

proved using optimistic initialization. However, when N(se, ae) is zero, Equation (3.1) prescribes

assigning a pessimistic value to r̄e instead of using optimistic initial values to define Q∗∗
↓ . This is

problematic in cases that the observability of the environment reward is stochastic. If the agent

does not get to observe the environment in its first visit, then it becomes pessimistic about the

unobserved reward (possibly for ever).

Our response to the challenge of becoming prematurely pessimistic is intuitively described as

having a “cautiously optimistic” agent. Before asking the agent to follow Q∗∗
↓ , the agent should

first undergo an additional stage to assess the observability of the environment rewards. This stage

tries to determine, with high probability, whether the environment reward for each environment

state-action is observable or not. Then based on the findings of this stage, the agent is able to use

r̄e such that with high probability the assigned pessimism is actually for environment rewards that

are effectively never-observable. Otherwise, the principle of optimism can be safely used. We call

this stage as the observation stage.

In the observation stage, the agent transforms the underlying Mon-MDP M = ⟨S,A,R, p, fm⟩
it is facing, into an MDP ˜︂M = ⟨S,A, {0, 1}, ˜︁p⟩. In MDP ˜︂M , S is the state space, which is the joint

state space of M , A is the action space, which is the joint action space of M , the set of rewards is

{0, 1}, and ˜︁p is the transition dynamics. At time step t the immediate reward ˜︁Rt+1 for the joint

state-action (St, At) ≡ (Se
t , S

m
t , Ae

t , A
m
t ) is defined as

˜︁Rt+1 = I
{︂ ˆ︁Re

t+1 ̸= ⊥
⃓⃓⃓
St, At

}︂
· I {N (Se

t , A
e
t) = 0} . (3.3)

Maximizing this reward corresponds to selecting actions a ∈ A that results in observing the en-

vironment reward in states s ∈ S where their environment reward has not been observed so far,
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i.e., N (Se
t = se, Ae

t = ae) = 0. This stage is only concerned with discovering which environment

rewards are observable, it only focuses on state-actions that their environment reward has not been

observed so far. Otherwise, the agent has figured out whether environment reward for which partic-

ular state-actions is observable and, upon enough visits, a good sample estimate of the environment

reward’s mean can be computed. The term I {N (Se
t , A

e
t) = 0} in Equation (3.3) introduces non-

stationarity to the problem as once the environment reward for (Se
t = se, Ae

t = ae) is observed, the

value of the indicator function flips. We argue that this non-stationarity eventually washes out.

The agent would observe everything that is observable and anything that is never-observable will

remain never-observable. Also, when N(Se
t = se, Ae

t = ae) is positive, it will remain positive, thus

the value of I {N(Se
t = se, Ae

t = ae) = 0} would result in a deterministic reward of zero because

N(Se
t = se, Ae

t = ae) would always be bigger than zero and the argument inside the indicator

function is false. This deterministic reward makes the optimization in ˜︂M easier. In the worst-case

scenario, I {N(Se
t = se, Ae

t = ae) = 0} would be one for all state-actions.

In order to make the transformation from M to ˜︂M in the observation stage more tangible,

consider the example of Figure 3.1. In this example, the environment has only a single state

Figure 3.1: An example of a Mon-MDP. The agent has four cardinal actions and two separate
monitor actions to ASK or NOT ASK for reward. Each cardinal action with ASKing is denoted by =⇒
and each cardinal action with NOT ASKing is denoted by −→. If the agent ASKs, it observes the
reward for the taken cardinal action. But, by ASKing the agent also pays a cost. If the agent does
NOT ASK, it does not observe the reward for the taken cardinal action and does not pay any costs.

corresponding to the cell that the agent is located at. The agent has four cardinal actions {LEFT,
DOWN, RIGHT, UP}, which all of them result in staying in the current state and an environment

reward of zero. Moreover, the agent has two monitor actions ASK, NOT ASK. Each cardinal action

with ASKing is denoted by =⇒ and each cardinal action with NOT ASKing is denoted by −→. If
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the agent moves and also ASKs, then it will observe the environment reward of zero. If it does NOT

ASK, then it will observe ⊥. Suppose at the current time step t the agent selects the RIGHT action

and ASKs. Also, suppose at a time step t′ < t, the agent had already ASKed and consequently had

observed the reward of zero only for going RIGHT. Then, ˜︁Rt+1 in the associated ˜︂M is

˜︁Rt+1 =
⇐= ⇐

=

=⇒ =
⇒ ←− ←
−

−→ −→

1 1 0 1 0 0 0 0
.

We can execute MBIE-EB on ˜︂M to find and optimal policy seeking observability. For a state-action

(s, a) define p (s′|s, a) =
∑︁

r′∈{0,1} ˜︁p (s′, r′|s, a) ,∀s′ ∈ S. Then, identical to Equation (2.9), we have

r̄(s, a) =
1

N(s, a)

N(s,a)∑︂
i=1

˜︁Ri, p̄
(︁
s′
⃓⃓
s, a
)︁
=

1

N(s, a)

N(s,a)∑︂
i=1

I
{︁
S′
i = s′

}︁
, ∀s′ ∈ S.

However, r̄(s, a) is zero for all state-actions. Because, for all state-actions that their environment

reward has been observed I {N(Se
t = se, Ae

t = ae) = 0} is zero, and for all state-actions that their

reward is yet to be observed, I
{︂ ˆ︁Re

t+1 ̸= ⊥
⃓⃓⃓
St = s,At = a

}︂
is zero. Hence, the optimistic action-

values ˜︁Q∗∗ in ˜︂M , analogous to Equation (2.13), with probability at least 1− δ
2 is

˜︁Q∗∗(s, a) = γ
∑︂
s′

p̄(s′ | s, a)max
a′

˜︁Q∗∗(s′, a′) + (1− γ)−1

⌜⃓⃓⎷ ln
(︂
2|S||A|m

δ

)︂
2N(s, a)

, (3.4)

where m is the number of samples required until p̄ is close to its true value, indicated by Lemma 2.3.

However, inspired by the derivation of Q∗∗
↓ in Equation (3.2) to have different bonuses on the

mean reward and the next state’s discounted value, we use the upper confidence bound of r̄. This

use of the upper confidence bound makes the agent more optimistic with respect to the yet-to-

be-observed rewards. More optimism means the agent is more eager to explore the observability

of the yet-to-be-observed rewards. Since r̄ is Bernoulli, KL-UCB [15, 34] is the suitable option to

compute the upper confidence bound of r̄. Hence, ˜︁Q∗∗ is turned into

˜︁Q∗∗(s, a) = KL-UCB(0, N(s, a)) · I {N(se, ae) = 0}+ γ
∑︂
s′

p̄(s′ | s, a)max
a′

˜︁Q∗∗(s′, a′) +
βobs√︁
N(s, a)

,

(3.5)

where KL-UCB(µ̄, n) =

max
µ

{︃
µ ∈ [0, 1] : d(µ̄, µ) ≤ βKL-UCB

n

}︃⃓⃓⃓⃓
µ̄=0

= max
µ

{︃
µ ∈ [0, 1] : ln

(︃
1

1− µ

)︃
≤ βKL-UCB

n

}︃
,
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βKL-UCB = ln
(︂
8|S||A|m

δ

)︂
, and βobs = (1− γ)−1

√︃
0.5 ln

(︂
8|S||A|m

δ

)︂
.

In the KL-UCB’s definition, d is the relative entropy between two Bernoulli distributions. Note

that KL-UCB(0, N(s, a)) explicitly shows that the empirical probability of observing the environ-

ment reward so far has been zero. This use of the KL-UCB instead of the empirical mean r̄, as

used in the original MBIE-EB, mandates proving that ˜︁Q∗∗ remains optimistic, otherwise, other

components of MBIE-EB is untouched. Lemma 3.1 gives us a high probability guarantee that ˜︁Q∗∗

is an optimistic action-value. The proof is provided in Appendix C.1.

Lemma 3.1. Let ˜︂M = ⟨S,A, {0, 1}, ˜︁p⟩ be an MDP obtained by transforming a truthful Mon-MDP

using observability reward defined in Equation (3.3) and let 0 ≤ γ < 1. If

βKL-UCB = ln

(︃
8 |S| |A|m

δ

)︃
and βobs = (1− γ)−1

√︄
0.5 ln

(︃
8 |S| |A|m

δ

)︃
,

then ˜︁Q∗∗(s, a) ≥ ˜︁Q∗(s, a) with probability at least 1 − δ
4 for all state-actions that have not been

visited at least m times defined in Lemma 2.3.

In summary, in this section we introduced the observation stage, where the agent tries to

determine the observability of the environment rewards with high probability. We showed that the

agent in this stage follows ˜︁Q∗∗, as specified in Equation (3.5).

3.3 Monitored MBIE-EB

In this section, we explain our full proposed algorithm, Monitored MBIE-EB. Monitored MBIE-EB

puts together the rationale of MBIE-EB and the observation stage into a single procedure. The

agent operates in slices of episodes each with a maximum length of H. Monitored MBIE-EB uses

κ∗(k), where k is the episode counter, and κ∗ : N ∪ {0} → R is a sublinear function, to determine

if the agent should go through the observation stage. Otherwise, if the agent does not use the

observation stage, it attempts to obtain minimax-optimality by following the policy corresponding

to Q∗∗
↓ . Algorithm 2 shows the pseudocode of Monitored MBIE-EB.

In summary, the insight behind Monitored MBIE-EB is seeking the observability of rewards

while ensuring convergence to a near-minimax-optimal policy in polynomial time, or asymptotically,

depending on how the agent schedules to enter the observation stage using κ∗(k).
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Algorithm 2 Monitored MBIE-EB

1: κ← 0
2: for episodes k := 1, 2, 3, . . . do
3: if κ ≤ κ∗(k) then
4: // Observation Stage

5: Q← ˜︁Q∗∗ // Equation (3.5)

6: κ← κ+ 1
7: else
8: Q← Q∗∗

↓ // Equation (2.13)

9: for steps h := 1, 2, . . . ,H do
10: Follow the greedy policy with respect to Q.

3.3.1 Sample Complexity

Similar to Section 2.3 where the sample complexity of MBIE-EB was given, in this section, we

determine the Monitored MBIE-EB’s sample complexity as our measure of its efficiency. In Mon-

MDPs partial observability of the environment reward naturally makes any algorithm take more

time. The lower the probability is, the more samples are required to confidently approximate the

statistics of the environment reward. As a result we extend the definition of PAC-MDP explained

in Section 2.3 to PAC-Mon-MDP:

Definition 4. An algorithm is PAC-Mon-MDP minimax-optimal if for any Mon-MDP M =

⟨S,A,R, p, fm⟩ with a truthful monitor function, discount factor 0 ≤ γ < 1 and any δ, ϵ > 0,

the algorithm finds an ϵ-optimal policy in M↓, the worst-case Mon-MDP in the equivalence class of

M , in time polynomial to
(︂
|S| , |A| , 1ϵ , ln

1
δ ,

1
1−γ , r

e
max + rmmax,

1
ρ

)︂
, where 0 < ρ ≤ 1 is the minimum

non-zero probability of observing the environment reward, embedded in fm.

Since the observation stage uses an instantiation of MBIE-EB, by virtue of Theorem 2.1 there

exists a k∗ ∈ ˜︁O (︂ |S|2|A|H
ϵ3(1−γ)5

)︂
such that if κ∗(k) = k∗ (constant function), then the agent with high

probability learns the observability status of each environment reward in polynomial time. This

choice of κ∗(k) gives Monitored MBIE-EB the possibility of becoming PAC-Mon-MDP conditioned

on maintaining polynomial sample complexity after the agent has left the observation stage. A

matter we will show is taken care of in Theorem 3.1, but before proving the theorem we state a

series of useful lemmas in proving it.

Lemma 3.2 bounds the difference between a fixed policy’s action-value in two Mon-MDPs M1

and M2 in terms of how much M1’s and M2’s immediate expected reward and transition dynamics

are different from each other. It is useful in proving Lemma 3.3. Lemma 3.2 is the adaptation of

the Simulation Lemma [23, 47] from MDPs to Mon-MDPs. The proof is provided in Appendix C.2.
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Lemma 3.2. Let M1 = ⟨S,A,R1, p1, f
m⟩ and M2 = ⟨S,A,R2, p2, f

m⟩ be two Mon-MDPs and

0 ≤ γ < 1. Assume the following bounds hold

−remax ≤ re1, r
e
2 ≤ remax and − rmmax ≤ rm1 , rm2 ≤ rmmax .

Also, assume the following conditions hold for all joint state-actions (s, a) ≡ (se, sm, ae, am),

|re1(se, ae)− re2(s
e, ae)| ≤ φe,

|rm1 (sm, am)− rm2 (sm, am)| ≤ φm, and

∥p1(· | s, a)− p2(· | s, a)∥1 ≤ φ,

then for any stationary deterministic policies π it holds that

|Qπ
1 (s, a)−Qπ

2 (s, a)| ≤
φe + φm + 2φγ(remax + rmmax)

(1− γ)2
.

Monitored MBIE-EB uses empirical models. Lemma 3.3 demonstrates that a fixed policy π ex-

hibits similar action-values in two Mon-MDPs with comparable transition dynamics and immediate

expected rewards. Consequently, an agent achieves near-desired behavior by ensuring the accuracy

of its built models. Later we will use this lemma to measure how many samples are required to

obtain accurate models. The proof is provided in Appendix C.3.

Lemma 3.3. Let M1 = ⟨S,A,R1, p1, f
m⟩ and M2 = ⟨S,A,R2, p2, f

m⟩ be two Mon-MDPs and

0 ≤ γ < 1. Assume the following bounds hold

−remax ≤ re1, r
e
2 ≤ remax and − rmmax ≤ rm1 , rm2 ≤ rmmax .

Suppose further for all joint state-actions (s, a) ≡ (se, sm, ae, am) the following are satisfied,

|re1(se, ae)− re2(s
e, ae)| ≤ φe, |rm1 (sm, am)− rm2 (sm, am)| ≤ φm, ∥p1(· | s, a)− p2(· | s, a)∥1 ≤ φ.

There exists a constant C such that for any 0 < ϵ ≤ (remax+rmmax)
1−γ , and any stationary policy π, if

φe = φm = φ = C ϵ(1−γ)2

remax+rmmax
, then

|Qπ
1 (s, a)−Qπ

2 (s, a)| ≤ ϵ .

Lemma 3.4 determines the number of visits to each state-action to have accurate estimates of

the transition dynamics and the immediate mean reward. The proof is provided in Appendix C.4.

Lemma 3.4. Let M = ⟨S,A,R, p, fm⟩, 0 ≤ γ < 1 and ρ be the minimum non-zero probability of

observing the environment reward in M . For τ = C ϵ(1−γ)2

remax+rmmax
, where C is a constant specified in
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Lemma 3.3, if ρ−1 > O (|S|), then there exists an m,

m ∈ O
(︃

1

ρτ2
ln
|S| |A|
τδ

)︃
= O

(︃
1

ρϵ2(1− γ)4
ln
|S| |A|

ϵ(1− γ)2δ

)︃
,

and if ρ−1 < O (|S|), then there exists an m,

m ∈ O
(︃
|S|
τ2

+
1

τ2
ln
|S| |A|
τδ

)︃
= O

(︃
|S|

ϵ2(1− γ)4
+

1

ϵ2(1− γ)4
ln
|S| |A|

ϵ(1− γ)2δ

)︃
,

such that with probability at least 1− δ, |r̄(s, a)− r(s, a)| ≤ τ and ∥p̄(· | s, a)− p(· | s, a)∥1 ≤ τ hold

for all state-actions that have been visited at least m times.

Lemma 3.5 describes the difference in a policy’s state-value between two distinct Mon-MDPs,

given that their transition dynamics and rewards are identical on certain state-actions (those in set

K), and arbitrarily different on the other state-actions. If the difference in the value of the same

policy between these two Mon-MDPs is large, the probability of reaching a state that differentiates

the two Mon-MDPs is also high. Lemma 3.5 is the adaptation of the Induced Inequality [23, 47]

from MDPs to Mon-MDPs. The proof is provided in Appendix C.5.

Lemma 3.5. Let M be a Mon-MDP, K a set of state-actions, M ′ a Mon-MDP equal to M on K
(identical transition and reward function), π a policy, and H be some positive integer. Let EM be

the event that a state-action not in K is encountered in a trial generated by starting from S0 and

following π for H steps in M , then

V π
M (S0)H ≥ V π

M ′(S0)H −
P (EM )

2(1− γ)
.

Lemma 3.6 shows Monitored MBIE-EB exhibits the principle of OFU in the worst-case Mon-

MDP the agent could be facing during the interaction. Optimism incentives the agent to visit

state-actions, where the estimates are not accurate. The proof is provided in Appendix C.6

Lemma 3.6. Let M be any truthful Mon-MDP. With probability at least 1− 5δ
6 , Q

∗∗
↓ (s, a) ≥ Q∗

↓(s, a)

for all joint state-actions that have not been visited at least m times.

Theorem 3.1 is our main result for Monitored MBIE-EB describing its sample complexity.

Theorem 3.1. Suppose that ϵ, and δ are two real numbers between zero and one. Suppose M =

⟨S,A,R, p, fm⟩ is any truthful Mon-MDP and ρ is the minimum non-zero probability of observing

the environment reward in M . Let 0 ≤ γ < 1 be the discount factor. There exist an input m as in

Lemma 3.4 such that if Monitored MBIE-EB is executed on M and value iteration is done every

H ∈ O
(︂
(1− γ)−1 ln 1

ϵ(1−γ)

)︂
time steps for H iterations, then the following holds. Let πt denote
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the policy of Monitored MBIE-EB at time t and St denote the state at time t. With probability at

least 1− δ, V πt
↓ (St) ≥ V ∗

↓ (St)− ϵ is true for all but ˜︁O (︂ |S||A|
ϵ3(1−γ)6ρ

)︂
time steps.

Proof. Let ϵ1 = ϵ2 =
ϵ
2 , and δ1 = δ2 =

δ
2 . According to Theorem 2.1 there exists k∗ ∈ ˜︁O (︂ |S|2|A|

ϵ31(1−γ)6

)︂
such that if κ∗(k) = k∗, then the observability of environment rewards are determined with prob-

ability at least 1 − δ1. Let ϵ3 be an arbitrary positive real number, whose precise value we will

specify later. Let H = O
(︂
(1− γ)−1 ln 1

ϵ3(1−γ)

)︂
be a positive integer large enough so that for all

Mon-MDPs M ′ with discount factor γ, policies π and states s, the output of the value iteration for

H steps, V π
M ′(s)H , is ϵ3 close to the true value V π

M ′(s).

First, we argue that after each (s, a) has been experienced a polynomial number of times m, the

empirical model learned from those experiences, r̄e(se, ae), r̄m(sm, am) and p̄(· | s, a) will be suffi-

ciently close to their true values re(se, ae), rm(sm, am), and p(· | s, a), hence using models will result

in a near-minimax-optimal policy. We want that the state-value function of any policy according

to r̄e(se, ae), r̄m(sm, am), and p̄(· | s, a) is no more than ϵ3 away from its true value according to

re(se, ae), rm(sm, am), and p(· | s, a) (but otherwise the same), with high probability. It follows from

Lemma 3.3 that it is sufficient to require |r̄e(se, ae)− re(se, ae)| ≤ τ, |r̄m(sm, am)− rm(sm, am)| ≤
τ , and ∥p̄(· | s, a)− p(· | s, a)∥1 ≤ τ for τ = C ϵ3(1−γ)2

remax+rmmax
, where C is the constant specified in

Lemma 3.3. Using Lemma 3.4 it follows

m ≥

⎧⎨⎩C1

(︂
1

ρϵ23(1−γ)4
ln |S||A|

ϵ3(1−γ)2δ2

)︂
, if ρ−1 > O (|S|) ;

C2

(︂
|S|

ϵ23(1−γ)4
+ 1

ϵ23(1−γ)4
ln |S||A|

ϵ3(1−γ)2δ2

)︂
, if ρ−1 ≤ O (|S|) ,

(3.6)

for some positive constants C1 and C2

Consider some fixed time step t. Let St be the current state. Define K to be the set of all

state-actions that have been experienced at least m times. Let us call K the set of known state-

actions. Recall that the Monitored MBIE-EB agent (denoted by πt) chooses its next action by

following π∗∗ = arg maxaQ
∗∗
↓ (St, a) at time step t that corresponds to Mon-MDP M∗∗

↓ . Let M ′
↓

be the Mon-MDP equal to M↓ on K (equal reward and transition dynamics) and equal to M∗∗
↓ on

S ×A−K. Define M̄↓ be the Mon-MDP, where the intimidate expected rewards are r̄e and r̄m and

p̄ is the transition dynamics. Let M̄ ′
↓ be the the Mon-MDP that is equal to M̄↓ on K and equal to

M∗∗
↓ on S ×A−K. From our choice of m,⃓⃓⃓

V ∗∗
M̄ ′

↓
(s)− V ∗∗

M ′
↓
(s)
⃓⃓⃓
≤ ϵ3 (3.7)

holds for all states, with probability at least 1− δ2. Also note that M∗∗
↓ is identical to M̄ ′

↓ except

that some state-actions (precisely those in K) have additional bonuses. The state-actions in K that

their environment reward is observable will have these extra bonuses βe
√
ρm , βm

√
m

and β√
m
. That is
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upon visiting joint state-action (s, a) ≡ (se, sm, ae, am) for m times

N(s, a) = m, N(sm, am) ≥ m, and N(se, ae) ≥ ρm.

In the worst-case βm√
N(s,a)

= βm
√
m
, βe√

N(se,ae)
= βe

√
ρm , and β√

N(s,a)
= β√

m
. For state-actions in K,

where rewards are unobservable, we add bonuses of βm
√
m

and β√
m
. Hence,

V ∗∗
↓ = V ∗∗

M∗∗
↓
≤ V ∗∗

M̄ ′
↓
+ (1− γ)−1

(︃
βe

√
ρm

+
βm

√
m

+
β√
m

)︃
.

For our analysis, we require that

(1− γ)−1

(︃
βe

√
ρm

+
βm

√
m

+
β√
m

)︃
≤ ϵ3. (3.8)

In Equation (3.2) we defined

βe =

√︄
2 ln (

6 |S| |A|m
δ2

), βm =

√︄
2 ln (

6 |S| |A|m
δ2

), and β =
2γ

(1− γ)

√︄
2 ln (

6 |S| |A|m
δ2

).

It is not hard to show we can make m large enough so that Equations (3.6) and (3.8) hold, yet

small enough that Lemma 3.4 holds. This comes by bounding each term in Equation (3.8) by ϵ3
3 :⎧⎪⎪⎪⎨⎪⎪⎪⎩

3 βe
√
ρm ≤ ϵ3(1− γ)

3 βm
√
m

≤ ϵ3(1− γ)

3 β√
m

≤ ϵ3(1− γ)

Which results in the following inequalities⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
18

ln
(︂

6|S||A|m
δ2

)︂
ρϵ23(1−γ)2

≤ m,

18
ln

(︂
6|S||A|m

δ2

)︂
ϵ23(1−γ)2

≤ m,

72
γ2 ln

(︂
6|S||A|m

δ2

)︂
ϵ23(1−γ)4

≤ m.

Lemma B.1 shows these inequalities satisfy Lemma 3.4. Given Equation (3.8) holds, we have

V ∗∗
↓ ≤ V ∗∗

M̄ ′
↓
+ ϵ3. (3.9)

Let EM↓ be an event that some some state-action not in K is experienced after following π∗∗ from
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St for H steps. According to Lemma 3.5

V πt
↓ (s)H ≥ V ∗∗

M ′
↓
(s)H −

P
(︁
EM↓

)︁
2(1− γ)

. (3.10)

Consider two mutually exclusive cases. First, suppose P
(︁
EM↓

)︁
≥ 2ϵ3(1−γ), i.e., an agent following

πt will encounter an unknown state-action in H steps with probability at least 2ϵ3(1 − γ). Using

Chernoff-Hoeffding’s inequality, after O
(︂
m|S||A|H
ϵ3(1−γ) ln 1

δ2

)︂
time steps, where P

(︁
EM↓

)︁
≥ 2ϵ3(1− γ) is

satisfied, all state-actions will become known with probability at least 1− δ2
2 .

Now suppose that P
(︁
EM↓

)︁
< 2ϵ3(1− γ), then we have

V πt
↓ (St) ≥ V πt

↓ (St)H − ϵ3

≥ V ∗∗
M ′

↓
(St)H −

P
(︁
EM↓

)︁
2(1− γ)

− ϵ3

≥ V ∗∗
M ′

↓
(St)H − 2ϵ3

≥ V ∗∗
M ′

↓
(St)− 3ϵ3

≥ V ∗∗
M̄ ′

↓
(St)− 4ϵ3

≥ V ∗∗
↓ (St)− 5ϵ3

≥ V ∗
↓ (St)− 5ϵ3.

The first step uses the bound on
⃓⃓⃓
V πt
↓ (St)− V πt

↓ (St)H

⃓⃓⃓
and the choice of H. The second step is

the application of Equation (3.10). The third step is from our assumption. The forth step follows

from the choice of H. The fifth step follows from Equation (3.7). The sixth step follows from

Equation (3.9). And the last step uses Lemma 3.6.

Therefore, by ϵ3 = ϵ2
5 = ϵ

10 , the policy of Monitored MBIE-EB is ϵ-minimax-optimal with

probability at least 1−δ2 = 1− δ
2 for all, but O

(︂
m|S||A|H
ϵ(1−γ) ln 1

δ

)︂
many time steps. In the worst-case,

m ∈ O
(︃

1

ρϵ2(1− γ)4
ln
|S| |A|

ϵ(1− γ)2δ

)︃
. (3.11)

Comparing Equation (3.11) with the bound of κ∗(k), the overall bound is equal to

˜︁O(︃ |S| |A|H
ϵ3(1− γ)5ρ

)︃
= ˜︁O(︃ |S| |A|

ϵ3(1− γ)6ρ

)︃
.

In words, Theorem 3.1 implies that we can have two positive numbers δ and ϵ, which we divide

each of them into two equal numbers δ1 and δ2, and ϵ1 and ϵ2, where δ1 = δ2 =
δ
2 , and ϵ1 = ϵ2 =

ϵ
2 .

Then, with probability at least 1 − δ1, the observation stage determines the observability of all
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environment rewards in ˜︁O (︂ |S|2|A|
ϵ31(1−γ)6

)︂
time steps. After the observation stage, with probability at

least 1 − δ2, the minimax-optimal policy is found in ˜︁O (︂ |S||A|
ϵ32(1−γ)6ρ

)︂
time steps. The bounds add,

yielding a polynomial sample complexity dominated by the second term.

3.3.2 Dependence On ρ−1 Is Unimprovable

The main distinction between our derived bound in Theorem 3.1 and sample complexities given for

MDPs such as the bound of Theorem 2.1 is the existence of ρ−1. In this section, by showing the

existence of ρ−1 in a lower bound, we conclude that the dependence of our bound in Theorem 3.1

on ρ−1 is essentially unimprovable. Note that lower bounds quantify the difficulty of learning for a

given problem for any algorithm. Given a lower bound, no algorithm’s performance can be better

than what the lower bound indicates. Hence, providing a lower bound with its dependence on ρ−1

proves the tightness of the Monitor MBIE-EB’s sample complexity on term ρ−1.

To provide the lower bound, we consider the problem of stochastic bandits with finitely-many

arms (multi-armed bandit for brevity) [29] as a simpler form of sequential decision-making. A multi-

armed bandit is a special case of MDPs where the state-space S is a singleton and the discount factor

γ equals zero. Mannor and Tsitsiklis [35] has proved a tight lower bound on the sample complexity

of learning in multi-armed bandits. We follow the setup of Mannor and Tsitsiklis [35] as follows:

The agent has k + 1 arms (actions). Each arm a ∈ [k] is associated with a sequence of identically

distributed Bernoulli random variables Xat with unknown mean µa. Here, Xat corresponds to

the reward obtained the tth time that arm a is tried. We assume that random variables Xat for

a = 1, . . . , k + 1, and t = 1, . . . are independent. The last arm a = k + 1 has a known mean of

zero and pulling this arm terminates the interaction. A policy is a mapping that given a history,

chooses a particular arm. We only consider policies that are guaranteed to eventually pull arm k+1

with probability one, for every possible vector of [µ1, . . . , µk, 0] (otherwise the expected number of

steps of interaction would be infinite). Given a particular policy and multi-armed Bernoulli bandit,

we let P and E denote the induced probability measure and the expectation with respect to this

measure. This probability measure captures both the randomness in the arms and the policy. Let

T be total number of steps at which the policy chooses arm k + 1 and terminates the interaction.

Also, let At denote the arm chosen at time step t. We say that a policy is (ϵ, δ)-correct if

P
(︂
µAT−1

> max
a

µa − ϵ
)︂
≥ 1− δ,

for every [µ1, . . . , µk+1] ∈ [0, 1]k+1, where µk+1 = 0. Theorem 3.2 shows the lower bound on

E [T − 1] for every (ϵ, δ)-correct policy. We refer the reader to the original work for the proof.

Theorem 3.2 (Mannor and Tsitsiklis [35, Theorem 1]). There exists positive constants c1, c2, ϵ0,

and δ0, such that for every k ≥ 2, ϵ ∈ (0, ϵ0), and δ ∈ (0, δ0), and for every (ϵ, δ)-correct policy,

33



there exists some [µ1, . . . , µk, 0] such that

E [T − 1] ≥ c1
k

ϵ2
ln

c2
δ
.

In particular, ϵ0 and δ0 can be taken equal to 1
8 and e−4

4 , respectively.

In the following corollary we use the result of Theorem 3.2 to provide the lower bound in a

multi-armed bandit, where the reward of each arm is revealed with only the probability of ρ.

Corollary 3.2.1. Under the Theorem 3.2’s conditions with the addition that the each arm’s reward

is only revealed with probability 0 < ρ < 1 and with probability 1− ρ the symbol ⊥ is revealed, then

E [T − 1] ≥ c1
k

ρϵ2
ln

c2
δ
.

Proof. Since we only consider policies that terminates with probability one, then there exists an

n ∈ N such that T ≤ n. Let Xi denote the reward obtained at round i = 1, 2, . . . . We have,

E [T ] = E

[︄
n∑︂

t=1

k∑︂
a=1

I {At = a}

]︄
+ 1

=
n∑︂

t=1

k∑︂
a=1

(E [I {At = a}]) + 1

=

n∑︂
t=1

k∑︂
a=1

(E [I {At = a}|Xt ̸= ⊥] + E [I {At = a}|Xt = ⊥]) + 1

≥
n∑︂

t=1

k∑︂
a=1

(E [I {At = a}|Xt ̸= ⊥]) + 1

=
n∑︂

t=1

k∑︂
a=1

(︃
E [I {At = a,Xt ̸= ⊥}]

P (Xt ̸= ⊥)

)︃
+ 1 (Conditional expectation’s definition)

=
1

ρ

n∑︂
t=1

k∑︂
a=1

(E [I {At = a,Xt ̸= ⊥}]) + 1

=
1

ρ
E

[︄
n∑︂

t=1

k∑︂
a=1

I {At = a,Xt ̸= ⊥}

]︄
+ 1

=
1

ρ
c1

k

ϵ2
ln

c2
δ

+ 1 (Theorem 3.2).

Thus,

E [T − 1] ≥ c1
k

ρϵ2
ln

c2
δ
.
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The existence of ρ−1 in the lower bound of Corollary 3.2.1 asserts that the dependence of the

Monitor MBIE-EB’s sample complexity on ρ−1 is tight and unimprovable.

In summary, in this chapter we extended the MBIE-EB’s idea to Mon-MDPs. However, due to

the contrasting demands of pessimism in Mon-MDPs and optimism by MBIE-EB, we introduced the

observation stage. In the observation stage, the agent determines in which state-actions it should

be pessimistic. We introduced Monitored MBIE-EB that combines the MBIE-EB’s extension with

the observation stage. We showed Monitored MBIE-EB enjoys a polynomial sample complexity.

Finally, we provided a lower bound in a special case of the stochastic multi-armed bandit problem

with partially observable rewards. The lower bound proved that the dependence of Monitored

MBIE-EB’s sample complexity on the probability of observing the environment rewards is tight.
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Chapter 4

Empirical Evaluation

In this chapter, we present the details for Monitored MBIE-EB’s practical implementation7. We

demonstrate Monitored MBIE-EB’s superiority against the current SOTAmethod, Directed Exploration-

Exploitation [39], over four dozen domains.

4.1 Practical Implementation

The Monitored MBIE-EB’s advantages extend beyond theory. In this section, we explain the Mon-

itored MBIE-EB’s practical implementation. This explanation is necessary because theoretically

justified parameters for Monitored MBIE-EB present challenges in practice. These parameters ap-

pear in the Theorem 3.1’s bound and the value of κ∗(k). First, we rarely have a particular ϵ and

δ in mind, preferring algorithms that produce ever-improving approximations with ever-improving

probability. The second is the constant κ∗(k) = k∗, which places the observation stage only at the

start of training. Third, running value iteration from scratch (with an initial value of 0) prior to

each episode to compute Q∗∗
↓ or ˜︁Q∗∗ is computationally wasteful.

In practice, we follow the pattern of Lattimore and Szepesvári [29], with the confidence bounds

growing slightly faster than logarithmically. By defining g(x) = 1 + x ln2(x), x ∈ R≥0, Table 4.1

summarizes how we replaced theoretically justified Monitored MBIE-EB’s parameters with ones

that can be used in practice. After using the practical expressions, the scale parameters β, βm,

βe, βobs, and βKL-UCB are tuned manually for each domain. The log base of κ∗(k) = log k, is also

manually tuned for each domain. Finally, Q∗∗
↓ or ˜︁Q∗∗ are both initialized optimistically. We do fifty

steps of value iteration [43] before every episode to improve Q∗∗
↓ and fifty steps of value iteration

before episodes at the observation stage to improve ˜︁Q∗∗. At each invocation, value iteration is

initialized with the most recent output, maintaining separate updates for Q∗∗
↓ and ˜︁Q∗∗.

7Code: https://github.com/IRLL/Exploration-in-Mon-MDPs.
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Theoretical Practical Unexplained variables

β = 2γ
(1−γ)

√︂
2 ln (

12|S||A|m
δ

) β
√︁

g(lnN(s)) N(s) is the number of visits to state s

βm =
√︂

2 ln (
12|S||A|m

δ
) βm

√︁
g(lnN(sm)) N(sm) is the number of visits to state sm

βe =
√︂

2 ln (
12|S||A|m

δ
) βe

√︁
g(lnN(se)) N(se) is the number of observed rewards at state se

βobs = (1− γ)−1

√︃
0.5 ln

(︂
8|S||A|m

δ

)︂
β
√︁

g(lnN(s)) N(s) is the number of visits to state s

βKL-UCB = ln
(︂

8|S||A|m
δ

)︂
βKL-UCBg (lnN(s)) N(s) is the number of visits to state s

κ∗(k) = k∗ = ˜︁O(︃
|S|2|A|H
ϵ31(1−γ)5

)︃
κ∗(k) = log k -

Table 4.1: Replacing Monitored MBIE-EB’s theoretical parameters with practical alternatives.

4.2 Evaluation

This thesis claims Monitored MBIE-EB takes advantage of: the Mon-MDP structure, the possibility

of a known monitor, and dealing with unsolvable Mon-MDPs. This section divides these claims

into four research questions (RQs) to investigate if Monitored MBIE-EB:

• RQ1) Explores efficiently in hard-exploration tasks?

• RQ2) Acts pessimistically when rewards are unobservable?

• RQ3) Identifies and learns about difficult to observe rewards?

• RQ4) Takes advantage of a known model of the monitor?

To address these questions, we first present results on two tasks with two monitors, followed by

results on 48 benchmarks from Parisi et al. [39], designed to showcase the Directed-E2’s effectiveness.

4.2.1 Environment and Monitor Description

In this section, we explain the dynamics of River Swim, a classic environment to test how Monitored

MBIE-EB performs the exploration. Also, we explain the dynamics of Bottleneck, an environment

we designed to create variations of reward observability in Mon-MDPs. We also describe the

dynamics of the monitors used in each experiment.

River Swim (Figure 4.1a) is a difficult exploration task with two actions. It was initially designed

to highlight the MBIE-EB’s strength in performing deep, efficient exploration [37, 47]. Moving LEFT

always succeeds, but moving RIGHT may not — the river current may cause the agent to stay at

the same location or even be pushed to the left. The goal state is on the far right with a reward

of 1. However, the LEFT action at the leftmost tile yields a reward of 0.1, and it is much easier to

reach. Other states have zero rewards. Agents often struggle to find the optimal policy (always
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(a) River Swim.

(b) Bottleneck.

Figure 4.1: River Swim and Bottleneck. River Swim is appropriate for testing exploration capabil-
ities. Bottleneck is useful to create different non-ergodic Mon-MDPs.

move RIGHT), and, converge to always move LEFT. We pair River Swim with the MDP Monitor,

which ensures rewards are always visible, letting us focus on the algorithm’s exploration ability.

As one of our contributions, Bottleneck environment, (Figure 4.1b) accepts five deterministic

actions: LEFT, UP, RIGHT, DOWN, WATER, which move the agent around the grid and pour water.

Episodes end when the agent executes WATER in either small flower pot (with a reward of 0.1) or

in the big flower pot state (with a reward of 1). Reaching the cactus yields -10, and other states

yield 0. However, states denoted by ⊥ have never-observable rewards of -10, i.e., Re
t+1 = −10 at

time step t for actions leading to those states but ˆ︁Re
t+1 is equal to ⊥. In these experiments, we

pair Bottleneck with the Button Monitor, where the monitor state Sm
t at time step t is either ON or

OFF (initialized at random) and is switched if the agent executes DOWN in the button state. When

the monitor is ON, the agent receives Rm
t+1 = −0.2 at every time step and observes the current

environment reward (except for⊥ cells). The minimax-optimal policy follows the shortest path to

the big flower pot, while avoiding the cactus and ⊥ states. The minimax-optimal policy should

turn the monitor OFF, if it was initialized to ON at the beginning of the episode. To evaluate how

Monitored MBIE-EB performs when observability is stochastic, we consider two versions of the
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Button Monitor: one where the monitor works as intended and rewards are observable with 100%

probability if ON, and the other where the rewards are observable only with 5% probability if ON

(and 0% of the time when OFF). Also, we show the result when the monitoring process is known to

the agent in advance by the Known monitor baseline.

4.2.2 Results

In this section, we present the results of executing Monitored MBIE-EB on River Swim and Bot-

tleneck. In all benchmarks, the discount factor is γ = 0.99. The full set of hyperparameters appear

in Appendix D.7, and full evaluation details (e.g., episode lengths, evaluation frequencies, etc.) are

in Appendix D.1. Results shown in Figures 4.2 and 4.3 are at test time, i.e., when during training,

the agent’s learning is paused and the agent follows the current greedy policy without exploring.

To answer RQ1, consider the results in Figure 4.2a. In this case, the performance of Monitored

MBIE-EB significantly outperforms that of Directed-E2. This task is difficult for any ϵ-greedy

exploration strategy (such as the one of Directed-E2).

To answer RQ2, consider Figure 4.2b. In this case, states marked with ⊥ are never observable

by the agent, regardless of the monitor state. Because the minimum environment reward in this

task is remin = −10, the minimax-optimal policy is to avoid states marked by ⊥ while reaching the

goal state. Monitored MBIE-EB is able to find this minimax-optimal policy, whereas Directed-E2

does not because it does not learn to avoid unobservable rewards1. This result highlights the impact

of pessimism: unsolvable Mon-MDPS require pessimism when the reward cannot be observed.

To answer RQ3, consider Figure 4.2c. Despite the difficulty to observe rewards, Monitored

MBIE-EB is able to learn the minimax-optimal policy. This shows that Monitored MBIE-EB is

still appropriately pessimistic, successfully avoiding ⊥ states and the cactus, and reaches the goal

state. Because rewards are only visible one out of twenty times (when the monitor is ON), learning

is much slower than in Figure 4.2b, matching ρ−1 in Theorem 3.1’s bound.

To answer RQ4, consider the Known monitor’s results in Figure 4.2d, demonstrating the Mon-

itored MBIE-EB’s performance when provided the model of the Button Monitor 5%. Results

indicate Monitored MBIE-EB’s convergence speed increases significantly, as Monitored MBIE-EB

takes (on average) 30% fewer steps to find the optimal policy. This feature of Monitored MBIE-EB

is particularly important in settings where the agent has already learned about the monitor pre-

viously, or the practitioner provides the agent with an accurate model of the monitor. The agent

needs only to learn about the environment, and does not need to explore the monitoring process.

1Directed-E2 describes initializing its reward model randomly, relying on the Mon-MDP being solvable, inde-
pendent of the initialization. For unsolvable Mon-MDPs, this is not true, and Directed-E2 depends significantly
on initialization. In fact, while not noted by Parisi et al. [39], pessimistic initialization with Directed-E2 results in
asymptotic convergence for unsolvable Mon-MDPs.
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(c) Bottleneck (5%)
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(d) Bottleneck (5%)

Figure 4.2: Discounted return at test time, averaged over 30 seeds (shaded areas denote 95%
confidence intervals). Monitored MBIE-EB (in green) outperforms Directed-E2 (in orange) and
always converges to the minimax-optimal policy (the dashed black line). (a) shows the superior
exploration of Monitored MBIE-EB compared to Directed-E2. (b) shows that Monitored MBIE-
EB finds the minimax-optimal policy while Directed-E2 does not. (c) and (d) both show results
in the Bottleneck with the 5% Button Monitor, but with different axis ranges to highlight the
improvement if Monitored MBIE-EB already knows details of the monitor (in purple).

To better understand the above results, Figure 4.3 shows how many times the agent visits

the goal state and ⊥ states per testing episode. Both algorithms initially visit the goal state

(Figure 4.3a) during random exploration (i.e., when executing the policy after zero time steps

of training). Monitored MBIE-EB appropriately explores for some training episodes (recall that

rewards are only observed in ON and even then only 5% of the time), and then learns to always go
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Figure 4.3: Visits to important states at test time in the Bottleneck with 5% Button Monitor.
Results are averaged over 30 trials, and shaded areas denote 95% confidence intervals. Directed-E2

fails to focus on the goal and instead keeps visiting ⊥ states, whereas Monitored MBIE-EB reduces
its visitation frequency instead, ultimately visiting only the goal.

to the goal. Both initially visit ⊥ states (Figure 4.3b). However, while Monitored MBIE-EB learns

to be appropriately pessimistic over time and avoids them, Directed-E2 never updates its (random)

initial estimate of the value of ⊥ states and incorrectly believes they should continue to be visited.

This lack of update explains why Directed-E2 performs even worse in Figure 4.2c.

Finally, Figure 4.4 presents results comparing Monitored MBIE-EB across all domains and mon-

itor benchmarks from Parisi et al. [39]. In these 48 benchmarks, Monitored MBIE-EB significantly

outperforms Directed-E2 in all but five of them, where they perform similarly. Since the confidence

intervals don not overlap, the performance of Monitored MBIE-EB over 43 of the benchmarks are

statistically significant. Appendix D.1 contains the details of all 48 benchmarks.

In summary, in this chapter we discussed possible changes to make Monitored MBIE-EB prac-

tical on finite domains. We revisited Directed-E2 as the SOTA algorithm in Mon-MDPs and used

it as the benchmark of empirical performance of Monitored MBIE-EB. We showed efficient explo-

ration of Monitored MBIE-EB on River Swim. We also demonstrated the minimax-optimality of

Monitored MBIE-EB on Bottleneck, where some rewards are never-observable. We provided evi-

dence that knowing the monitor speeds up the learning. Finally, we showed Monitored MBIE-EB

comprehensively outperforms Directed-E2 on domains that where designed for Directed-E2.
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Figure 4.4: Performance on 48 benchmarks from Parisi et al. [39]. Monitored MBIE-EB outperforms
Directed-E2 in 43 of them and performs on par in the remaining five.
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Chapter 5

Conclusion and Future Work

The core premise of this work is that incorporating reward observability into algorithm design

enables the effective handling of sequential decision-making problems in which the reward signal

is entirely unobservable to the agent. We demonstrated the effectiveness of incorporating reward

observability by proposing Monitored MBIE-EB and the rationale behind every crucial step in

Monitored MBIE-EB’s development from theory to practice. We showed Monitored MBIE-EB

is effective and efficient in finding the optimal policy in MDPs. Hence it is applicable in the

traditional MDP formulation. Additionally, we demonstrated that Monitored MBIE-EB is effective

and efficient in Mon-MDPs, where traditional algorithms developed for MDPs fail. Monitored

MBIE-EB’s Effectiveness in Mon-MDPs was further supported by illustrating the superior empirical

performance of Monitored MBIE-EB compared to the SOTA algorithm Directed-E2 in Mon-MDPs.

Furthermore, since Monitored MBIE-EB is a model-based algorithm, this property allowed to

incorporate prior knowledge about the monitor, which resulted in faster learning. In this chapter

we state the limitations of Monitored MBIE-EB which leads to laying out the potential future

avenues to extend the current work. Finally, we provide a conclusion.

5.1 Limitations and Future work

There are a number of limitations to our approach that suggest directions for future improvements.

First, Mon-MDPs contain an exploration-exploitation dilemma, but with an added twist — the

agent needs to treat never observed rewards pessimistically in order to achieve a minimax-optimal

solution; however, the agent should continue exploring those states to get more confident about their

unobservability. Much like early algorithms for the exploration-exploitation dilemma in MDPs [25],

our approach separately optimizes a model for observing and one for seeking a minimax-optimal

solution. A more elegant approach would be to simultaneously optimize for both. Second, the notion
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of the minimax-optimality presented in this work does not necessarily lead to a no-regret algorithm.

In other words, there is a possibility that assuming the minimum reward for unobservable ones is

unnecessarily pessimistic and since the agent is excessively pessimistic about the unobservable

rewards, it suffers from regret when the underlying rewards are not the minimum possible. One

solution is to develop a randomized algorithm that stochastically deals with unobservable rewards.

Third, our approach uses explicit counts to drive its exploration, which limits it to enumerable Mon-

MDPs. Adapting psuedocount-based methods [6, 33, 36, 50] can help making Monitored MBIE-EB

more applicable to large or continuous state spaces. Finally, the decision of when to stop trying to

observe rewards and instead optimize is essentially an optimal stopping time problem [29], and there

may be considerable innovations that could improve the bounds along with empirical performance.

5.2 Conclusion

We introduced Monitored MBIE-EB for Mon-MDPs that addressed many of the shortcomings of

previous algorithms. Monitored MBIE-EB admits the first sample complexity bounds for Mon-

MDPs, while being applicable to both solvable and unsolvable Mon-MDPs, for which it is also the

first. We showed the dependence of Monitored MBIE-EB’s sample complexity on the inverse of the

probability of observing the reward is tight. Furthermore, Monitored MBIE-EB exploits the struc-

ture of the Mon-MDP and can take advantage of knowledge of the monitor process, if available.

These features were shown to not just be theoretical. We showed these innovations result in em-

pirical improvements in Mon-MDP benchmarks, comprehensively outperforming the previous best

learning algorithm.
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Appendix A

Solvability of Mon-MDPs

In this chapter we formally define when a Mon-MDP is solvable and when unsolvable. This chapter

is useful to clarify why a Mon-MDP is called unsolvable.

Definition 5 (Parisi et al. [40, Definition 1]). Let M = ⟨S,A,R, p, fm⟩ be a truthful Mon-MDP.

Let M be the set of all Mon-MDPs that differ from M only in expected environment reward re.

Define ΠM to be the set of all policies in M and Π =
⋃︁

M ′∈MΠM ′ to be the set of all Mon-MDPs’

policies in M. Further, let τℓ =

{︃(︂
Si, Ai, ˆ︁Re

i+1, R
m
i+1, Si+1

)︂ℓ−1

i=0

⃓⃓⃓⃓
π,M

}︃
be a trajectory of length ℓ

in M when following a policy π, where E
[︂ ˆ︁Re

i+1

⃓⃓⃓ ˆ︁Re
i+1 ̸= ⊥, Si, Ai

]︂
= re(Se

i , A
e
i ) almost surely. Let

TL =
⋃︁

M×Π

(︂
∪L−1
l=0 τℓ

)︂
be the set of all L length trajectories inM. The indistinguishability relation

I between Mon-MDPs M1,M2 ∈M is defined:

M1IM2 : ∀L ∈ N,∀τ ∈ TL,P (τ |M1) = P (τ |M2) almost surely.

It follows directly from the definition that the indistinguishability is an equivalence relation:

1. Reflexive. Every Mon-MDP M is indistinguishable from itself: MIM .

2. Symmetric. If M1 is indistinguishable from M2, so is M2 from M1: M1IM2 ⇔M1IM2

3. Transitive. If M1 and M2 are indistinguishable, and M2 and M3, so are M1 and M3:

M1IM2 ∧M2IM3 ⇒M1IM3.

As an equivalence relation, I partitions Mon-MDPs into disjoint classes. If |[M ]I| = 1, the agent can

eventually identify M and its optimal policy, making M solvable. If |[M ]I| > 1, M is unsolvable,

as it is indistinguishable from at least another Mon-MDP with possibly different optimal policies.
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Appendix B

Propositions

This chapter revisits the auxiliary propositions useful in proving this thesis’s lemmas and theorems.

Lemma B.1. For any a, x > 0, x ≥ 2a ln a implies x ≥ a lnx.

Proof. First we prove that for ∀x > 0, x > 2 lnx. Consider the function y = x−2 lnx. It is enough

to prove that y > 0 is always true on its domain. we have that

dy

dx
= 1− 2

x
,

d2y

d2x
=

2

x2
> 0.

Therefore, y = x− lnx is convex. Also,

dy

dx
= 1− 2

x
= 0⇒ x = 2

Hence, the minimum of y = x− lnx = 2− ln 2 > 0 and x > 2 lnx,∀x > 0.

Back to the inequalities in the lemma, let z = x
a , then we need to prove that z ≥ 2 ln a implies

z ≥ ln (za). There are only two possible cases:

• If a ≥ z, then:

ln za = ln z + ln a ≤ 2 ln a ≤ z

Which is by the assumption of z ≥ 2 ln a.

• If a < z, then:

ln a < ln z ⇒ ln za ≤ 2 ln z < z

which is by our proof in the beginning that z ≥ 2 ln z, ∀z > 0.
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Lemma B.2. Let Ω be an outcome space, and each of (Xi)
n
i=1 and (Yi)

n
i=1 each be n random

variables on Ω. It holds that, {︄
n∑︂

i=1

Xi ≥
n∑︂

i=1

Yi

}︄
⊆

{︄
n⋃︂

i=1

(Xi ≥ Yi)

}︄
.

Proof. Proof by contradiction.

Suppose {
∑︁n

i=1Xi ≥
∑︁n

i=1 Yi} ⊃ {
⋃︁n

i=1(Xi ≥ Yi)}, then it means there exists an ω ∈ Ω such

that
∑︁n

i=1Xi(ω) ≥
∑︁n

i=1 Yi(ω) but X1(ω) < Y1(ω), X2(ω) < Y2(ω), · · ·Xn(ω) < Yn(ω) that results

in
∑︁n

i=1Xi(ω) <
∑︁n

i=1 Yi(ω) which is a contradiction.

Corollary B.0.1. Let (Xi)
n
i=1 and (Yi)

n
i=1 be n random variables on probability space (Ω,F ,P). It

holds that,

P

(︄
n∑︂

i=1

Xi ≥
n∑︂

i=1

Yi

)︄
≤

n∑︂
i=1

P (Xi ≥ Yi) .

Proof. Using Lemma B.2 and due to monotonicity of measures we have

P

(︄
n∑︂

i=1

Xi ≥
n∑︂

i=1

Yi

)︄
≤ P

(︄
n⋃︂

i=1

(Xi ≥ Yi)

)︄
.

By applying the union bound the inequality is obtained.

Lemma B.3 (Chernoff-Hoeffding’s inequality). For (Xi)
n
i=1 independent samples on probability

space (Ω,F ,P) where Xi ∈ [ai, bi] for all i and ϵ > 0, we have:

P

(︄
E [X1]−

1

n

n∑︂
i=1

Xi ≥ ϵ

)︄
≤ exp

(︃
− 2n2ϵ2∑︁n

i=1(bi − ai)2

)︃
.
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Appendix C

Proofs

In this chapter, we prove the lemmas that are stated in the main body of this work.

C.1 Proof of Lemma 3.1

Proof. Let N(s, a) denote the number of times a fixed state-action (s, a) is visited. According to

Strehl and Littman [47, Lemma 7], by choosing βobs = (1− γ)−1

√︃
0.5 ln

(︂
4|S||A|m

δ

)︂
,

˜︁Q∗∗(s, a) = γ
∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁
max
a′

˜︁Q∗∗ (︁s′, a′)︁+ βobs√︁
N(s, a)

≥ ˜︁Q∗(s, a),

with probability at least 1− δ
4|S||A|m . On the other hand, by choosing βKL-UCB = ln

(︂
4|S||A|m

δ

)︂
,

KL-UCB (0, N(s, a)) = max

{︃
µ ∈ [0, 1] : d(0, µ) ≤ βKL-UCB

N(s, a)

}︃
≥ r̄(s, a),

holds with probability at least 1− δ
4|S||A|m . Now consider the following random variables:

X1 = ˜︁Q∗(s, a)− γ
∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁
max
a′

˜︁Q∗∗ (︁s′, a′)︁ , X2 = r̄(s, a) = 0.

53



We have

P

⎛⎜⎜⎜⎝X1 ≥
βobs√︁
N(s, a)⏞ ⏟⏟ ⏞
Y1

⎞⎟⎟⎟⎠ ≤ δ

4 |S| |A|m
,

P

⎛⎜⎜⎜⎝X2 ≥ max

{︃
µ ∈ [0, 1] : d(0, µ) ≤ βKL-UCB

N(s, a)

}︃
⏞ ⏟⏟ ⏞

Y2

⎞⎟⎟⎟⎠ ≤ δ

4 |S| |A|m
.

Using Corollary B.0.1 we have

P (X1 +X2 ≥ Y1 + Y2) ≤
δ

2 |S| |A|m
.

Thus, with probability at least 1 − δ
2|S||A|m we must have that X1 +X2 ≤ Y1 + Y2. By replacing

the explicit values of X1 and X2, we have

˜︁Q∗(s, a)− γ
∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁
max
a′

˜︁Q∗∗ (︁s′, a′)︁ ≤ Y1 + Y2

˜︁Q∗(s, a) ≤ γ
∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁
max
a′

˜︁Q∗∗ (︁s′, a′)︁+ Y1 + Y2

˜︁Q∗(s, a) ≤ ˜︁Q∗∗(s, a) + max
µ

{︃
µ ∈ [0, 1] : d(0, µ) ≤ βKL-UCB

N(s, a)

}︃
.

By abusing the notation for ˜︁Q∗∗ to incorporate the maximization term, ˜︁Q∗(s, a) ≤ ˜︁Q∗∗(s, a). By

using the union bound over S,A and m the above inequality holds for all state-actions until they

are visited m times with probability at least 1− δ
2 .

C.2 Proof of Lemma 3.2

Proof. Let

∆ := max
(s,a)
|Qπ

1 (s, a)−Qπ
2 (s, a)| , ∆e := re1 (s

e, ae)− re2 (s
e, ae) , ∆m := rm1 (sm, am)− rm2 (sm, am) ,

∆p := γ
∑︂
s′

p1
(︁
s′
⃓⃓
s, a
)︁
V π
1

(︁
s′
)︁
− γ

∑︂
s′

p2
(︁
s′
⃓⃓
s, a
)︁
V π
2

(︁
s′
)︁
.
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Then,

|Qπ
1 (s, a)−Qπ

2 (s, a)| = |∆e +∆m +∆p| ≤ |∆e|+ |∆m|+ |∆p|

≤ φe + φm + γ

⃓⃓⃓⃓
⃓∑︂

s′

(︁
p1
(︁
s′
⃓⃓
s, a
)︁
V π
1

(︁
s′
)︁
− p2

(︁
s′
⃓⃓
s, a
)︁
V π
2

(︁
s′
)︁)︁⃓⃓⃓⃓⃓

= φe + φm+

γ

⃓⃓⃓⃓
⃓∑︂

s′

(︁
p1
(︁
s′
⃓⃓
s, a
)︁
V π
1

(︁
s′
)︁
− p1

(︁
s′
⃓⃓
s, a
)︁
V π
2

(︁
s′
)︁
+ p1

(︁
s′
⃓⃓
s, a
)︁
V π
2

(︁
s′
)︁
− p2

(︁
s′
⃓⃓
s, a
)︁
V π
2

(︁
s′
)︁)︁⃓⃓⃓⃓⃓

= φe + φm + γ

⃓⃓⃓⃓
⃓∑︂

s′

(︁
p1
(︁
s′
⃓⃓
s, a
)︁ (︁

V π
1

(︁
s′
)︁
− V π

2

(︁
s′
)︁)︁

+
(︁
p1
(︁
s′
⃓⃓
s, a
)︁
− p2

(︁
s′
⃓⃓
s, a
)︁)︁

V π
2

(︁
s′
)︁)︁⃓⃓⃓⃓⃓

≤ φe + φm + γ

⃓⃓⃓⃓
⃓∑︂

s′

p1
(︁
s′
⃓⃓
s, a
)︁ (︁

V π
1

(︁
s′
)︁
− V π

2

(︁
s′
)︁)︁⃓⃓⃓⃓⃓+ γ

⃓⃓⃓⃓
⃓∑︂

s′

(︁
p1
(︁
s′
⃓⃓
s, a
)︁
− p2

(︁
s′
⃓⃓
s, a
)︁)︁

V π
2

(︁
s′
)︁⃓⃓⃓⃓⃓

≤ φe + φm + γ

⃓⃓⃓⃓
⃓∑︂

s′

p1
(︁
s′
⃓⃓
s, a
)︁ (︁

V π
1

(︁
s′
)︁
− V π

2

(︁
s′
)︁)︁⃓⃓⃓⃓⃓+ 2γφ (remax + rmmax)

1− γ
.

By taking the max(s,a) from the both sides we have

∆ ≤ φe + φm + γ∆+
2γφ (remax + rmmax)

1− γ

(1− γ)∆ ≤ φe + φm +
2γφ (remax + rmmax)

1− γ

∆ ≤ φe + φm

1− γ
+

2γφ (remax + rmmax)

(1− γ)2

∆ ≤ φe + φm + 2γφ(remax + rmmax)

(1− γ)2
.

Since |Qπ
1 (s, a)−Qπ

2 (s, a)| ≤ ∆, the proof is completed.

C.3 Proof of Lemma 3.3

Proof. Using Lemma 3.2, we should show that

φe + φm + 2φγ(remax + rmmax)

(1− γ)2
= 2φ

1 + γ(remax + rmmax)

(1− γ)2
≤ ϵ,

which yields:

φ ≤ ϵ(1− γ)2

2 (1 + γ(remax + rmmax))
.
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By our assumption that rmmax = remax = 1, choosing C = 1
2+2(remax+rmmax)

= 1
6 completes the proof.

C.4 Proof of Lemma 3.4

In truthful Mon-MDPs the agent can face two kinds of joint state-actions: 1) state-actions that

lead to observing the environment reward e.g., moving and asking for reward 2) state -action pairs

that do not lead to observing the environment reward e.g., moving and not asking for reward. Let

us denote these sets as the observable and the unobservable respectively.

Proof.

Number of samples for the observable set. Since we have three unknown quantities re, rm,

and p —that are mappings from different input spaces— we need Lemmas 3.2 and 3.3 that are

straight adaptations of Strehl and Littman [47, Lemmas 1 and 2].

Using Lemma 3.3 if we want to find an ϵ−minimax-optimal policy for the state-actions that are

in the observable set, by choosing τ = 1
6ϵ(1− γ)2 we must have:

|r̄e (se, ae)− re (se, ae)| ≤ τ, |r̄m (sm, am)− rm (sm, am)| ≤ τ, ∥p̄(· | s, a)− p(· | s, a)∥1 ≤ τ.

On the other hand, we know that if (s, a) ≡ (se, sm, ae, am) has been visited N(s, a) times, its

monitor reward has been observed N (sm, am) times, and its environment reward has been observed

N (se, ae) times, with probabilities at least 1− δe, 1− δm, and 1− δ:

∥p̄(· | s, a)− p(· | s, a)∥1 ≤

√︄
2
[︁
ln (2|S| − 2)− ln δ

]︁
N(s, a)

(C.1)

|r̄m (sm, am)− rm (sm, am)| ≤

√︄
2 ln(2/δm)

N (sm, am)
(C.2)

|r̄e (se, ae)− re (se, ae)| ≤

√︄
2 ln(2/δe)

N (se, ae)
(C.3)

Thus, in order to find m, the least number of visits to (s, a), we make connections between

m,N(s, a), N (sm, am), and N (se, ae). If a joint state-action is visited m times, then:

m = N(s, a), m ≤ N (sm, am) ≤
∑︂
se,ae

m = |Se||Ae|m, m · ρ ≤ N (se, ae) ,

where the last inequality follows from the fact that the environment reward is observed with prob-
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ability ρ upon vising (s, a).

If we want Equations (C.1), (C.2) and (C.3) hold simultaneously with probability at 1 − δ

until (s, a) is visited m times, by setting δ = δm = δ
3|S||A|m and δe = δ

3|S||A|ρm to split the failure

probability equally for rewards and transitions of all state-actions until each of them have been

visited m times, it is enough ensure τ is bigger than the length of the confidence intervals:

m ≥ max

{︄
8
[︁
ln (2|S| − 2)− ln δ

]︁
τ2

,
8 ln (2/δm)

τ2
,
8 ln (2/δe)

τ2

}︄

≥ max

{︄
8
[︁
ln (2|S| − 2)− ln δ

]︁
τ2

,
8 ln (2/δe)

ρτ2

}︄

≥ max

⎧⎨⎩8
[︂
ln (2|S| − 2) + ln 3|S||A|m

δ

]︂
τ2

,
8 ln 6|S||A|ρm

δ

ρτ2

⎫⎬⎭
If ρ−1 ≥ O (|S|), then

m ≥
8 ln

(︂
6|S||A|ρm

δ

)︂
ρτ2

and by Lemma B.1, we have

m = O
(︃

1

ρτ2
ln
|S| |A|
τδ

)︃
= O

(︃
1

ρϵ2(1− γ)4
ln
|S| |A|

ϵ(1− γ)2δ

)︃
(C.4)

If ρ−1 ≤ O (|S|),

m ≥
8
[︂
ln (2|S| − 2) + ln 3|S||A|m

δ

]︂
τ2

,

which by Lemma B.1 implies

m = O
(︃
|S|
τ2

+
1

τ2
ln
|S| |A|
τδ

)︃
= O

(︃
|S|

ϵ2(1− γ)4
+

1

ϵ2(1− γ)4
ln
|S| |A|

ϵ(1− γ)2δ

)︃
. (C.5)

Number of samples for the unobservable set. These state-actions cannot change the sample

estimate of the mean environment reward and the only quantities updated upon visits are the

transition dynamics and the monitor reward. It is enough to have

m ≥ max

{︄
8
[︁
ln (2|S| − 2)− ln δ

]︁
τ2

,
8 ln (2/δm)

τ2

}︄
.
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Hence, similar to the above case when ρ−1 ≤ O (|S|), the dominant factor around learning the

sample estimates would be the transitions and the required sample size would be

m = O
(︃

|S|
ϵ2(1− γ)4

+
1

ϵ2(1− γ)4
ln
|S| |A|

ϵ(1− γ)2δ

)︃
. (C.6)

The total number of samples in the worst-case is obtained when ρ−1 ≥ O (|S|) and

m = O
(︃

1

ρϵ2(1− γ)4
ln
|S| |A|

ϵ(1− γ)2δ

)︃
.

C.5 Proof of Lemma 3.5

Proof. Fix t ≥ 0. For some fixed partial path Pt = S0, A0, R1, . . . , St−1, At−1, where Ri := Re
i +

Rm
i , 1 ≤ i ≤ t − 2. Let Kt be the set of all paths Pt such that every state-action (Si, Ai) with

0 ≤ i ≤ t− 1 appearing in Pt is known. Let Pπ,M be the probability measure induced by executing

π in M . Let Rt(M) be the reward received by the agent at time step t in M , and Rt(M,Pt) be the

reward be the reward received by the agent at time step t in M given that Pt was the partial path

generated, Now we have

⃓⃓
E
[︁
Rt

(︁
M ′)︁]︁− E [Rt(M)]

⃓⃓
=

⃓⃓⃓⃓
⃓ ∑︂
Pt∈Kt

[︁
Pπ,M ′(Pt) ·Rt(M

′, Pt)− Pπ,M (Pt) ·Rt(M,Pt)
]︁
+

∑︂
Pt /∈Kt

[︁
Pπ,M ′(Pt) ·Rt(M

′, Pt)− Pπ,M (Pt) ·Rt(M,Pt)
]︁ ⃓⃓⃓⃓⃓

=

⃓⃓⃓⃓
⃓⃓ ∑︂
Pt /∈Kt

[︁
Pπ,M ′(Pt) ·Rt(M

′, Pt)− Pπ,M (Pt) ·Rt(M,Pt)
]︁⃓⃓⃓⃓⃓⃓

≤

⃓⃓⃓⃓
⃓⃓ ∑︂
Pt /∈Kt

[︁
Pπ,M ′(Pt) ·Rt(M

′, Pt)
]︁⃓⃓⃓⃓⃓⃓+

⃓⃓⃓⃓
⃓⃓ ∑︂
Pt /∈Kt

[−Pπ,M (Pt) ·Rt(M,Pt)]

⃓⃓⃓⃓
⃓⃓

≤

⃓⃓⃓⃓
⃓⃓ ∑︂
Pt /∈Kt

[︁
Pπ,M ′(Pt) ·Rt(M

′, Pt)
]︁⃓⃓⃓⃓⃓⃓

≤
Pπ,M ′(EM ′)

2

=
Pπ,M (EM )

2

=
P (EM )

2
.
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The first step separates the possible paths in which the agent encounters an unknown state-action

from those in which only known state-actions are reached. We eliminate the first term, because

M and M ′ are identical on known state-actions. The third step uses triangle inequality. The fifth

step uses the fact that normalized rewards are at most 1. The sixth step follows from the fact

that M and M ′ are identical on known state-actions and the probability of the first encounter of

the unknown state-action is the same. The last step follows from the definition of the induced

probability measure. The results then follows:

|V π
M ′(S0)H − V π

M (S0)H | ≤
H−1∑︂
t=0

γt
⃓⃓
E
[︁
Rt+1

(︁
M ′)︁]︁− E [Rt+1(M)]

⃓⃓
≤

∞∑︂
t=0

γt
⃓⃓
E
[︁
Rt+1

(︁
M ′)︁]︁− E [Rt+1(M)]

⃓⃓
≤ P (EM )

2(1− γ)
.

C.6 Proof of Lemma 3.6

Proof. Suppose m is the least number of samples required for each state-action to ensure r̄m, p̄,

and r̄e are close to their true mean. To be pessimistic about the environment reward in cases that

r̄e cannot be computed due to its ever-lasting unobservability, we need to investigate the optimism

in two cases where r̄e can be computed and when it cannot. Consider N experiences of a joint

state-action (s, a) ≡ (se, sm, ae, am) and the first N e experiences of (se, ae) where the environment

reward has been observed. Also define V̄ ∗
↓ as:

V̄ ∗
↓ (s) := max

a
Q̄∗

↓(s, a) :=
∑︂
s′

P̄
(︁
s′
⃓⃓
s, a
)︁
V ∗
↓
(︁
s′
)︁
, ∀s ∈ S.

Case 1. N e is bigger than zero. Let X1i, X2i, and X3i be random variables defined at the ith

visit as below, where S′
i is the next state visited after the ith visit:

X1i = Re
i , X2i = Rm

i , X3i = γV̄ ∗
↓ (S

′
i).

If (s, a) has been visited N times and Re(se, ae) has been observed N e times, then:

• The sequence (X1i)
Ne

i=1 is available.

• At least the sequence (X2i)
N
i=1 is available. (At most (X2i)

|Se||Ae|N
i=1 )

• The sequence (X3i)
N
i=1 is available.
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Let (X1i)
Ne

i=1, (X2i)
N
i=1, and (X3i)

N
i=1 be random variables on the joint probability space. By applying

the Chernoff-Hoeffding’s inequality:

• For X1i we have

P

(︄
E [X11]−

1

N e

Ne∑︂
i=1

X1i ≥ B3

)︄
≤ exp

(︃
−N eB2

3

2

)︃
.

• For X2i we have

P

(︄
E [X21]−

1

N

N∑︂
i=1

X2i ≥ Y2

)︄
≤ exp

(︃
−NY 2

2

2

)︃
.

• For X3i we have that γ −2
1−γ ≤ X3i ≤ γ 2

1−γ hence

P

(︄
E [X31]−

1

N

N∑︂
i=1

X3i ≥ Y1

)︄
≤ exp

(︃
−NY 2

1 (1− γ)2

8γ2

)︃
.

Define the following random variables on (Ω,F ,P):

X1 = E [X11]−
1

N e

Ne∑︂
i=1

X1i, X2 = E [X21]−
1

N

N∑︂
i=1

X2i, X3 = E [X31]−
1

N

N∑︂
i=1

X3i.

By choosing Y1 =
βe

√
Ne

, Y2 =
βm
√
N
, and Y3 =

β√
N

where

β =
2γ

1− γ

√︄
2 ln

(︃
6 |S| |A|m

δ

)︃
, βm =

√︄
2 ln

(︃
6 |S| |A|m

δ

)︃
, βe =

√︄
2 ln

(︃
6 |S| |A|m

δ

)︃
.

Using Corollary B.0.1, we have

P (X1 +X2 +X3 ≥ Y1 + Y2 + Y3) ≤ exp

(︃
−N eY 2

3

2

)︃
+ exp

(︃
−NY 2

2

2

)︃
+ exp

(︃
−NY 2

1 (1− γ)2

8γ2

)︃
.

Thus,

P
(︃
X1 +X2 +X3 ≥

βe

√
N e

+
βm

√
N

+
β√
N

)︃
≤ δ

2 |S| |A|m
. (C.7)

With probability 1− δ
2|S||A|m it must hold that

X1 +X2 +X3 ≤
(︃

βe

√
N e

+
βm

√
N

+
β√
N

)︃
,
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which is equal to

1

N e

k∑︂
i=1

Re
i +

1

N

N∑︂
j=1

(︁
Rm

j + V̄ ∗
↓ (S

′
j)
)︁
+

(︃
βe

√
N e

+
βm

√
N

+
β√
N

)︃
≥ E

[︁
Re

1 +Rm
1 + γV̄ ∗

↓ (S
′
1)
]︁

= Q∗
↓(s, a).

Therefore,

r̄e (se, ae) + r̄m (sm, am) + γ
∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁
V ∗
↓
(︁
s′
)︁
+

(︃
βe

√
N e

+
βm

√
N

+
β√
N

)︃
≥ Q∗

↓(s, a). (C.8)

Using the union bound over S,A, and m, Equation (C.8) holds for all state-actions until they are

visited m times with probability at least 1 − δ
2 . Instead of the left-hand side of Equation (C.8),

Monitored MBIE-EB uses the following action-values to relax the lack of knowledge of V ∗:

Q∗∗
↓ (s, a) = r̄e (se, ae) + r̄m (sm, am) + γ

∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁
V ∗∗
↓
(︁
s′
)︁
+

(︃
βe

√
N e

+
βm

√
N

+
β√
N

)︃
. (C.9)

Following the induction of Strehl and Littman [47, Lemma 7], we prove Q∗∗
↓ (s, a) ≥ Q∗

↓(s, a). Let

C =

(︃
β√
N

+
βm

√
N

+
βe

√
N e

)︃
.

Proof by induction is on the number of value iteration steps. Let Q∗∗
↓ (s, a)i be the ith iterate of

the value iteration for (s, a). By the optimistic initialization we have that Q∗∗
↓ (s, a)0 ≥ Q∗

↓(s, a) for

all state-actions. Now suppose the claim holds for Q∗∗
↓ (s, a)i, we have

Q∗∗
↓ (s, a)i+1 = r̄e (se, ae) + r̄m (sm, am) + γ

∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁
max
a′

Q∗∗
↓
(︁
s′, a′

)︁
i
+ C

= r̄e (se, ae) + r̄m (sm, am) + γ
∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁
V ∗∗
↓
(︁
s′
)︁
i
+ C

≥ r̄e (se, ae) + r̄m (sm, am) + γ
∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁
V ∗
↓
(︁
s′
)︁

(Using induction)

≥ Q∗
↓(s, a). (Equation (C.8))

Case 2. N e is zero. If N e is zero for (s, a), then Monitored MBIE-EB assigns −remax to r̄ (se, ae)

deterministically. Thus, the previously random variable X1 in Case 1, is deterministically zero and

there would be no randomness around it. Consequently, Equation (C.7) is turned into

P
(︃
X2 +X3 ≥

βm

√
N

+
β√
N

)︃
≤ δ

3 |S| |A|m
,
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where β and βm are as before. Then, with probability 1− δ
3|S||A|m it must hold that

X2 +X3 ≤
(︃

βm

√
N

+
β√
N

)︃
,

which is equal to

1

N

N∑︂
j=1

(︁
Rm

j + γV̄ ∗
↓ (S

′
j)
)︁
+

(︃
βm

√
N

+
β√
N

)︃
≥ E

[︁
Rm

1 + γV̄ ∗
↓ (S

′
1)
]︁
= Q∗

↓(s, a)− (−remax).

Therefore,

−remax + r̄m (sm, am) + γ
∑︂
s′

p̄
(︁
s′
⃓⃓
s, a
)︁
V ∗
↓
(︁
s′
)︁
+

(︃
β√
N

+
βm

√
N

)︃
≥ Q∗

↓(s, a). (C.10)

The rest of the proof is identical to the induction steps of case 1 with probability at least 1 − δ
3 .

Considering both cases, with probability at least 1− δ
2 −

δ
3 = 1− 5δ

6

Q∗∗
↓ (s, a) ≥ Q∗

↓(s, a).
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Appendix D

Methodological Details and Results

To clarify details used in our experiments, in this chapter we provide finer details around our

empirical evaluation. We explain the environments’ dynamics, monitors and hyperparameters. We

report results of experiments containing unsolvable Mon-MDPs and when the monitor is known.

Also, we report ablation studies to highlight the significance of Monitored MBIE-EB’s components.

D.1 Empirical Evaluation Details

This section defines the metric used in our experiments to assess performance. We report the

discounted test return, averaged over 30 random seeds with their corresponding 95% confidence

intervals. To compute this metric, training is paused every 100 steps, the agent is tested over 100

episodes, and the average obtained return is recorded as a data point before training resumes.

D.1.1 Environments’ Details

We provide the environments’ details to clarify on what environments the algorithms are tested

and what type of behavior is desirable. Environments that comprise the experiments are: Empty,

Hazard, Bottleneck, Loop, River Swim, One-Way, Corridor, Two-Room-3x5 and Two-

Room-2x11 shown in Figure D.1. In all of them (except River Swim) the agent, represented by

the robot, has 5 actions including 4 cardinal movement {LEFT, DOWN, RIGHT, UP} and an extra

WATER action. The agent’s goal is get to the big flower pot as fast as possible. The agent should

WATER the big flower pot to get a reward of +1 which also terminates the episode. The agent should

not WATER the small flower pots as they are distractors; watering them would yield a reward of 0.1

and terminates the episode as well. Cacti should be avoided as any action leading to their states

results in rewards of -10. Flytraps yield a reward of -0.1. Cells with a one-way sign transition
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Empty Hazard Bottleneck

Loop
River Swim

One-Way

Two-Room-2x11

Corridor

Two-Room-3x5

Figure D.1: Full set of environments. Except Bottleneck, all of the environments are borrowed from
Parisi et al. [39]. Cacti and Flytraps should be avoided. The goal is to water the big four flower
pot. Small single flower pots are distractors. The agent gets stuck in the holes unless randomly
gets pulled out. One-ways transition the agent in their own direction regardless of the action.

the agent only to their unique direction and if the agent stumbles on a hole, it would spend the

whole episode in the hole, unless with 10% probability the taken action is effective and the agent

gets transitioned. When a button monitor is configured on top of the environment, the location

of the button is figuratively is indicated by a push button placed on a cell’s border. It shows the

button is pushed if agent bumps itself into that cell’s border. The episode’s time limit in River

Swim, corridor and Two-Room-2x11 is 200 steps, and in other environments is 50 steps. In River

Swim the agent has only two actions L ≡ LEFT and R ≡ RIGHT. There is no termination except the

episode’s time limit. In this environment small flower pot have a reward of 0.01. Rivr Swim is the

only environment in our experiment suite that has stochastic transitions shown in Figure D.2.
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(R, 0.6, 0) (R, 0.35, 0) (R, 0.35, 0) (R, 0.35, 0) (R, 0.35, 0)
0 1 2 3 4 5(L, 1, 0.01)

(R, 0.6, 0) (R, 0.6, 0) (R, 0.6, 0) (R, 0.6, 0)

(L, 1, 0)
(R, 0.05, 0)

(L, 1, 0)
(R, 0.05, 0)

(L, 1, 0)
(R, 0.05, 0)

(L, 1, 0)
(R, 0.05, 0)

(L, 1, 0)
(R, 0.4, 0)

(R, 0.4, 0) (R, 0.6, 1)

Figure D.2: Dynamics of River Swim. Each tuple represents (action, transition probability, reward).

D.1.2 Monitors’ Details

In this section, we provide the monitors’ details used in our experiments. These details are useful

when evaluating the performance of algorithms to see how the algorithm could overcome challenges.

Monitors that comprise the experiments are: Full (MDP), Semi-Random, Full-Random, Ask,

Button, N-Supporters, N-Experts and Level-Up. For any of the monitors, except Full-

Monitor, if a cell in the environment is marked with ⊥, then under no circumstances and at no

time step, the monitor would reveal the environment reward to agent for the action that led agent

to that cell. For the rest of the environment state-action pairs the behavior of monitors, by letting

Xt ∼ U [0, 1], where U is the uniform distribution and ρ ∈ [0, 1], is as follows:

• MDP. This corresponds to the MDP setting:

Sm := {ON}, Am := {NO-OP}, Sm
t+1 := ON, Rm

t+1 := 0, ˆ︁Re
t+1 := Re

t+1.

• Semi-Random. Like an MDP, but the monitor hides non-zero rewards half the time.:

Sm := {ON}, Am := {NO-OP}, Sm
t+1 := ON, Rm

t+1 := 0. ˆ︁Re
t+1 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Re

t+1, if Re
t+1 = 0;

Re
t+1, if Xt ≤ 0.5

⊥, Otherwise.

• Full-Random. It is similar to Semi-Random except that the monitor hides any environment

reward with a predefined probability 1− ρ:

Sm := {ON}, Am := {NO-OP}, Sm
t+1 := ON, Rm

t+1 := 0, ˆ︁Re
t+1 :=

⎧⎨⎩Re
t+1 if , Xt ≤ ρ;

⊥, Otherwise.

• Ask. The monitor state space is a singleton but its action space has two elements: {ASK, NO-OP}.
The agent gets to see the environment reward with probability ρ if it ASKs. Upon asking agent
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pays -0.2 as the monitor reward:

Sm := {ON}, Am := {ASK, NO-OP}, Sm
t+1 := ON,

ˆ︁Re
t+1 :=

⎧⎨⎩Re
t+1, if Xt ≤ ρ and Am

t = ASK;

⊥, Otherwise;
Rm

t+1 :=

⎧⎨⎩−0.2, if Am
t = ASK;

0, Otherwise.

• Button. The state space is {ON, OFF}. The action space is a singleton. The agent sees the

environment reward with probability ρ as long as the monitor is ON, while paying -0.2 as the

monitor cost. The monitor state is flipped if the agent bumps itself to the button:

Sm := {OFF, ON}, Am := {NO-OP}, ˆ︁Re
t+1 :=

⎧⎨⎩Re
t+1, if Xt ≤ ρ and Sm

t = ON;

⊥, Otherwise;

Sm
t+1 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ON, if Sm

t = OFF and Se
t = "BUTTON-CELL" and Ae

t = "BUMP-INTO-BUTTON";

OFF, if Sm
t = ON and Se

t = "BUTTON-CELL" and Ae
t = "BUMP-INTO-BUTTON";

Sm
t , Otherwise;

Sm
0 := Random uniform from Sm, Rm

t+1 :=

⎧⎨⎩−0.2, if Sm
t = ON;

0, Otherwise.

• N-Supporters. The monitor state space comprises N states each representing the presence of a

supporter. The action space also comprises N actions. At each time step one of the supporters is

randomly present and if the agent could choose the action that matches the present supporter’s

index, then the agent gets to see the environment reward with probability ρ. Upon observing

the environment reward, the agent pays a penalty of −0.2 as the monitor reward. However, if

the agent chooses a wrong supporter, then it will be rewarded 0.001 (as a distractor):

Sm := {0, · · · , N − 1}, Am := {0, · · · , N − 1}, Sm
t+1 := Random uniform from Sm,

ˆ︁Re
t+1 :=

⎧⎨⎩Re
t+1, if Xt ≤ ρ and Sm

t = Am
t ;

⊥, Otherwise;
Rm

t+1 :=

⎧⎨⎩−0.2, Sm
t = Am

t ;

0.001, Otherwise.

Parisi et al. [39] considered this monitor as challenging, due to its big spaces, for algorithms

that use the successor representations. Yet, the encouraging nature of the monitor regarding the

agent’s mistakes makes it easy for reward-respecting algorithms, e.g., Monitored MBIE-EB.

• N-Experts. Similar to N -Supporter the state space has N states, each corresponding to the

presence of one of the N experts. However, experts’ advice is costly, hence the action space has

N + 1 action where the last action corresponds to not pinging any experts and is cost-free. At
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each time step, one of the experts is randomly present and if the agent selects the action that

matches the present expert’s index, the agent gets to see the environment reward with probability

ρ. Upon observing the environment reward agent pays a penalty of −0.2 as the monitor reward.

However, if the agent chooses a wrong expert it will be penalized by −0.001 as the monitor

reward. Since the last action does not inquire any of the experts its monitor reward is zero:

Sm := {0, · · · , N − 1}, Am := {0, · · · , N}, Sm
t+1 := Random uniform from Sm,

ˆ︁Re
t+1 :=

⎧⎨⎩Re
t+1, if Xt ≤ ρ and Sm

t = Am
t ;

⊥, Otherwise;
Rm

t+1 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−0.2, if Sm

t = Am
t ;

0, if Am
t = N ;

−0.001, Otherwise.

• Level-Up. This monitor tries to test the agent’s capabilities of performing deep exploration [37]

in the monitor spaces. The state space has N states corresponding to N levels. The action space

has N +1 actions. The initial state of the monitor is 0 and if at each time step the agent selects

the action that matches the state of the monitor, the state increases by one. If the agent selects

the wrong action the state is reset back to 0. The agent only gets to observe the environment

reward with probability ρ if it takes the state of the monitor to the max level. The agent is

penalized with −0.2 as the monitor reward every time it does not select the last action which

does nothing and keeps the monitor state as it is:

Sm := {0, · · · , N − 1}, Am := {0, · · · , N − 1, NO-OP}, Rm
t+1 :=

⎧⎨⎩0, if Am
t = NO-OP;

−0.2, Otherwise;

ˆ︁Re
t+1 :=

⎧⎨⎩Re
t+1, if Xt ≤ ρ and Sm

t = N − 1;

⊥, Otherwise;

Sm
t+1 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Sm
t , if Am

t = NO-OP;

max {Sm
t + 1, N − 1} , if Sm

t = Am
t ;

0, Otherwise.

D.2 When There Are Never-Observable Rewards

In this section, we evaluate how Monitored MBIE-EB performs in unsolvable Mon-MDPs. The

importance of this section is to verify the fact that pessimism is effectively useful in unsolvable

Mon-MDPs. Mon-MDPs designed by Parisi et al. [39] do not have non-ergodic monitors, which

would have given rise to unsolvable Mon-MDPs. Hence, we introduceBottleneck to investigate the

performance of Monitored MBIE-EB compared to Directed-E2. As noted in Footnote 1, Directed-
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E2’s performance in these settings depends critically on its reward model initialization. In order

to see minimax-optimal performance from that algorithm, we need to initialize it pessimistically.

Using the recommended random initialization saw essentially no learning in these domains. The

algorithm would believe the never-observable rewards were at their initialized value, and so seek

them out rather than treat their value pessimistically.

In Bottleneck the underlying reward of cells marked by ⊥ is the same as being a cactus (-10).

In these experiments we use Full-Random monitor since it is more stochastic than Semi-Random

to increase the challenge. Results are shown in Figure D.3. The location of the button is chosen

to test deep exploration capabilities of the agents meaning performing a long sequence of costly

actions in order to obtain the highest return. As a result the range of returns that the agent obtains

with Button monitor is naturally lower than the rest of the Mon-MDPs.

One of the weaknesses of Directed-E2 is its explicit dependence on the state space’s size. Because

Directed-E2 tries to visit every joint state-action pair infinitely often without paying attention to

their importance on maximizing the return, as the state space gets larger, the performance of

Directed-E2 deteriorates. To highlight this issue we use N -Experts monitor as an extension of Ask

monitor; Ask is a special case when N is one. We see in Figure D.3 Directed-E2’s performance is

hindered considerably when the agent faces N -Experts compared to Ask, while Monitored MBIE-

EB suffers to a lesser degree.

Monitored MBIE-EB Directed-E2 Minimax-Optimal

B
o
tt
le
n
ec
k

Full-Random

0 10 20 300.0

0.2

0.5

0.8

1.0

Ask

0 10 20 30

N -Supporters

0 10 20 30

N -Experts

0 10 20 30

Level Up

0 10 20 30

Button

0 10 20 30

-0.5

-0.2

0.1

0.3

Training Steps (×103)

Figure D.3: Monitored MBIE-EB outperforms Directed-E2 on Bottleneck with a non-ergodic mon-
itor. Even though Directed-E2’s reward model was initialized pessimistically to achieve asymptotic
minimax-optimality, its dependence on the state and action spaces’ size makes it struggle more
than Monitored MBIE-EB on N -Supporters, N -Experts and Level Up.

D.3 When There Are Stochastically-Observable Rewards

In this section, we confirm that Monitored MBIE-EB becomes pessimistic about environment re-

wards that are effectively never-observable. Hence, Monitored MBIE-EB should be robust against

stochastic observability. In all of the previous experiments, had the agent done the action that

would have revealed the environment reward, such as asking in Ask monitor, by paying the cost
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it would have seen the reward with 100% certainty. But even if the probability is not 100% and

yet bigger than 0, then upon enough attempts to observe the reward and paying the cost even

if a portion of them are fruitless, it is possible to observe and learn the environment reward. In

Figure D.4’s experiments, in addition to have environment state-action pairs that their reward is

permanently unobservable, we make the monitor stochastic for other pairs such that even if the

agent pays the cost, it would only observe the reward with probability ρ. In Figure D.4, it can be

seen that albeit the challenge of having stochastically and permanently unobservable rewards, Mon-

itored MBIE-EB has not become prematurely pessimistic about the rewards that can be observed,

even the probability goes down as low as 5%, and still outperforms Directed-E2.
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Figure D.4: Monitored MBIE-EB outperforms Directed-E2 on Bottleneck even if environment
rewards are stochastically observable. The plots also show the effect of ρ−1 in the Monitored
MBIE-EB’s sample complexity stated in Theorem 3.1. For a fixed environment and monitor, as the
probability of observing the reward decreases, the more samples are required to find a minimax-
optimal policy. The plots also indicates that although the sample complexity of Directed-E2 has
not been given theoretically, it must more severely depend on ρ−1 than Monitored MBIE-EB’s.

D.4 When the Monitor is Known

In this section, we verify that knowing the monitor speeds up the Monitored MBIE-EB’s learning.

We want to empirically show that knowing the monitor’s models is an advantage that Monitored

MBIE-EB can benefit from. A trait that is not readily possible in a model-free algorithm such

as Directed-E2. We have shown the superior performance of Monitored MBIE-EB compared to

Directed-E2, now we investigate how much of the difficulty of learning in Mon-MDPs comes from
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the monitor being unknown. The unknown quantities of the monitor to the agent are rm, pm, and

fm, hence in the following experiments we make all of them known to the agent in advance. The

only remaining unknown quantities are re and pe. Hence, we replace Equation (3.5) with

˜︁Q∗∗(s, a) = P
(︂ ˆ︁Rt+1 ̸= ⊥ | St = s,At = a

)︂
+ γ

∑︂
s′

p̄(s′ | s, a)max
a′

˜︁Q∗∗(s′, a′) + β

√︄
g(Nv(se))

Nv(se, ae)
,

where Nv(s
e, ae) counts the number of times se, ae has been visited, Nv(s

e) =
∑︁

aNv(s
e, ae) and

g(x) = 1 + x ln2 x, x ≥ 0. The intuition behind the bonus β
√︂

g(Nv(se))
Nv(se,ae)

comes from the fact that

p = pe⊗ pm and we only need to account for the uncertainty stemming from knowing pe. Since the

monitor is known there is no need to use KL-UCB, as the agent already knows which environment

rewards are observable (with what probability). Similarly, we replace Equation (3.2) with

Q∗∗
↓ (s, a) = r̄e(se, ae) + rm(sm, am) + γ

∑︂
s′

p̄(s′ | s, a)V ∗∗
↓ (s′) + βe

√︄
g(N(se))

N(se, ae)
+ β

√︄
g(Nv(se))

Nv(se, ae)
,

where the bonus βe
√︂

g(N(se))
N(se,ae) is due to the environment reward model, and β

√︂
g(Nv(se))
Nv(se,ae)

accounts for

the fact p̄e only gets more accurate by visiting insufficiently visited environment state-action pairs.

Figure D.5 shows the prior knowledge of the monitor’s quantities boosts the speed of Monitored

MBIE-EB’s learning and make it robust even in the low probability regimes.

D.5 Significance of Monitored MBIE-EB’s Innovations

Throughout this thesis, we have constantly emphasizing on extending the idea of MBIE-EB to

Mon-MDPs. In this section, we show how our innovations are crucial to be able to extend MBIE-

EB to Mon-MDPs. We show that without all our proposed innovations, there exists at least one

setting that the resulting algorithm fails.

D.5.1 Extending MBIE-EB to Mon-MDPs

MBIE-EB uses the initial action-values to assign optimistic values to state-action pairs that their

counts are zero. This means that in Mon-MDPs for joint state-action pairs (s, a) ≡ (se, sm, ae, am)

that any of N(se, ae), N(sm, am), or N(s, a) is zero, Q(s, a) would be shortcut to an optimistic value.

This approach contrasts with the pessimism of Equation (3.1), when N(se, ae) is zero. Hence, we

show that on the Bottleneck environment, when the reward of all ⊥ cells are observable to the

agent, MBIE-EB is effective. Because upon enough visitation resulting from the optimism, the

underlying environment reward will finally be observed. The efficacy of MBIE-EB in this setting
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Figure D.5: Knowing the monitoring process considerably accelerates learning in Mon-MDPs. The
similar learning speed in Ask and N -Experts show that the knowledge of the monitor make Moni-
tored MBIE-EB robust against the size of the monitor spaces. Also, the similarity of learning speed
for a fixed environment and monitor across experiments with high and low observability probability
shows that the in-advance-given knowledge of the monitor help the agent focus its exploration on
state-action pairs that their environment rewards is observable even if the probability is low.

is shown in Figure D.6a. However, the lack of necessary pessimism when the reward of all ⊥ cells

are unobservable make MBIE-EB ineffective. Because the optimism never washes out, hence the

agent would visit state-action pairs with unobservable rewards for ever. The failure of MBIE in at

least one unsolvable Mon-MDP is shown in the results of Figure D.6b.

D.5.2 Pessimistic MBIE-EB Without Observation Stage

In this section, we empirically highlight the importance of observation stage. In Appendix D.5.1

we showed that the excessive optimism of MBIE-EB hinders its performance in unsolvable Mon-

MDPs. Now, we examine that without the observation stage, adding the pessimism with respect

to the unobservable environment rewards is still prone to failure. We extend the MBIE-EB to

Mon-MDPs and for all state-action pairs (s, a) ≡ (se, sm, ae, am), when N(se, ae) is zero, we use

pessimistic rewards. This approach is effective in Mon-MDPs with deterministic observability of

the rewards (ρ = 1). This effectiveness is shown in Figure D.7a, where the results are obtained

by running the pessimistic MBIE-EB on the solvable Bottleneck. Pessimistic MBIE-EB is also

effective in unsolvable Mon-MDPs with deterministic observability, where only one visit to each

state-action pair is enough to conclude whether the environment reward is observable or not. We

verified this claim by running the pessimistic MBIE-EB on the unsolvable Bottleneck with 100%
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(a) Comparison between Monitored MBIE-EB and MBIE-EB in solvable Bottleneck. When all the rewards
are observable to the agent, MBIE-EB’s optimism is effective to learn all the unknown quantities. MBIE-EB
matches the performance of Monitored MBIE-EB.
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(b) Comparison between Monitored MBIE-EB and MBIE-EB in unsolvable Bottleneck. If some environment
rewards are unobservable to the agent, excessive MBIE-EB’s optimism ineffective. While Monitored MBIE-
EB is pessimistic with respect to unobservable rewards, MBIE-EB remains mistakenly optimistic about
them. The ever-lasting optimism of MBIE-EB makes it visit ⊥ cells for ever.

Figure D.6: Verifying the importance of pessimism instead of optimism in Mon-MDPs.

observability and the results are shown in Figure D.7b, (100%) row. However, if the observability

is stochastic then premature pessimism hinders the pessimistic MBIE-EB’s performance as it has

become pessimistic with respect to state-action pairs that otherwise it could have observed their

rewards eventually. This shortcoming of the pessimistic MBIE-EB compared to Monitored MBIE-

EB that uses the observation stage is evident in Figure D.7b, (5%) row.

D.6 Considerations

In this section, we enumerate the fine details used in the experiments. These details help to make

the thesis’ implementation reproducible:

• In all experiments, ρ = 1 unless otherwise states. In experiments that include N -Supporters or

N -Experts, N = 4 and the number of levels for Level-Up is 3.

• Hyperparameters of Directed-E2 consist of: Q0 the initial action-values, Ψ0 the initial visitation-

values, r0 the initial values of the environment reward model, β̄ goal-conditioned threshold spec-

ifying when a joint state-action pair should be visited through the use of visitation-values, α the

learning rate to update each Q or Ψ incrementally and discount factor γ that is held fixed 0.99.
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(a) Comparison between Monitored MBIE-EB and pessimistic MBIE-EB in solvable Bottleneck. When all
the rewards are deterministically observable and are observable, pessimistic MBIE-EB is effective. Because
a single visit to every state-action pair is sufficient to conclude that the reward is observable. Therefore,
pessimistic MBIE-EB matches the performance of Monitored MBIE-EB.
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(b) Comparison between Monitored MBIE-EB and pessimistic MBIE-EB in unsolvable Bottleneck. If the
observability of the environment reward is deterministic, then pessimistic MBIE-EB is effective in finding
the minimax-optimality. But, if the observability is stochastic, pessimistic MBIE-EB due to its premature
pessimism with respect to state-actions that their reward can be observed upon enough exploration fails
to find the minimax-optimal policy. On the other hand, due to exploring to observe the reward in the
observation stage, Monitored MBIE-EB is robust against the stochasticity in the observability of the reward.

Figure D.7: Verifying the importance of the observation stage.

These values are directly reported from Parisi et al. [39].

• Monitored MBIE-EB’s hyperparameters are set per environment and do not change across monitors.

The same applies to Directed-E2, but Parisi et al. [39] recommend to tune an ad-hoc learning rate

once N -Supporters or N -Experts are used as monitors.

• KL-UCB does not have a closed form solution, we compute it using the Newton’s method. The

stopping condition for the Newton’s method is chosen 50 iterations or the accuracy of at least 10−5

between successive iterative solutions, which one happens first.

• We ran all experiments on a SLURM-based cluster, using 32 Intel E5-2683 v4 Broadwell @ 2.1GHz

CPUs. 30 runs took about an hour on a 32 core CPU. Runs were parallelized whenever possible.

73



D.7 Hyperparameters

In this section, we mention the hyperparameters used in the experiments in this thesis to make

the interpretation of the results more complete. Let U denote the uniform distribution and x ↦→ y

denote the linear annealing of a quantity taking initially the value of x and ends with y.

Table D.1: Set of hyperparameters

(a) Hyperparameters of Monitored MBIE-EB across experiments.

Unknown monitor

Experiment Environment Q0
˜︁Q0 κ∗(k) βKL-UCB βobs, β, βm, βe

Figure 4.4

Empty 1 100 log1.005 k 5× 10−2 5× 10−4

Hazard 1 100 log1.005 k 5× 10−2 5× 10−4

One-Way 1 100 log1.005 k 5× 10−2 5× 10−4

River-Swim 30 100 log1.005 k 5× 10−2 5× 10−4

Appendix D.2 Bottleneck 1 100 log1.005 k 5× 10−2 5× 10−4

Appendix D.3 Bottleneck 1 100 log1.005 k 5× 10−2 5× 10−4

Known monitor

Experiment Environment Q0
˜︁Q0 κ∗(k) βe β

Appendix D.4 Bottleneck 1 100 log1.005 k 5× 10−4 5× 10−4

(b) Hyperparameters of MBIE-EB across experiments.

Experiment Environment Q0 β, βm, βe

Appendix D.5 Bottleneck 50 5× 10−4

(c) Hyperparameters of Directed-E2 across experiments.

(Annealing for N -Supporters and N -Experts)

Experiment Environment Q0 Ψ0 r0 β̄ α

Figure 4.4

Empty -10 1 U [−0.1, 0.1] 10−2 1(1 ↦→ 0.1)
One-Way -10 1 U [−0.1, 0.1] 10−2 1(1 ↦→ 0.1)
Hazard -10 1 U [−0.1, 0.1] 10−2 0.5(0.5 ↦→ 0.1)
River-Swim -10 1 U [−0.1, 0.1] 10−2 0.5 ↦→ 0.05

Appendix D.3 Bottleneck -10 1 −10 10−2 1(1 ↦→ 0.1)

Appendix D.3 Bottleneck -10 1 −10 10−2 1(1 ↦→ 0.1)
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