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What should the agent do?

The agent’s supposed to water

The agent only knows there is at least one W
that has the minimum reward a %/ that
has the highest reward.
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I'm going to answer the question in the slide’s title in this talk.




What should the agent do?

Breaking the overarching question into subproblems

@orr

1. How to detect L cells from all the others?

2. How to deal with L cells? J_

W

3. Can the agent be efficient in watering

while not impacting (1) and (2)?




This talk

Review:
* Markov Decision Processes
* Model-Based Interval Estimation with Exploration Bonus (MBIE-EB)
Problem setting:
* Monitored Markov Decision Processes
My proposed solution: Monitored MBIE-EB
* Theoretical performance
* Empirical performance
List of contributions
Future work
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Markov decision processes (MDPs)

A typical mathematical model of interaction in RL
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Markov decision processes (MDPs)

A typical mathematical model of interaction in RL

- » Environment
The goal: max [£ | Z Y'R,,
g =0
A finite MDP: (&, A, r, p, v) A, R S,
& is the state space
o is the action space v
Agent <

r is the expected immediate reward

p is the transition dynamics
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Markov decision processes (MDPs)

How to maximize the expected discounted return using models?

Follow > Environment
O*(s,a) = r(s,a) + ;/Zp (S’ S, a) VE(S).
"
The model-based learning’s challenge: Ay Riiq Sti1
We know sample estimates 7, and p,

but we don’t know the true r and p! @

. Agent <
One solution:

Using measures on how uncertain we are about 7, and p.

If we are confident about the quality of sample estimates, then we are golden.
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Measuring uncertainty

* Suppose you have n samples. Then

distance (empirical mean, true mean) <

* If you particularly have n Bernoulli samples. Then

distance (empirical mean, true mean) < —

for sufficiently large value of £.

p

n

p

n
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uncertainty.




|et Q denote the action-value
functions we get using 7, and p.



Model-based interval estimation with exploration bonus (MBIE-EB)

There is an algorithm called MBIE-EB! that is greedy with respect to:

A\

(s, a)

1. A. Strehl, et al. “An analysis of model-based Interval Estimation for Markov Decision Processes,”
(Journal of Computer and System Sciences '08)
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Model-based interval estimation with exploration bonus (MBIE-EB)

There is an algorithm called MBIE-EB! that is greedy with respect to:

Q(S, a) + 51;

) - -
—

uncertainty of 7

1. A. Strehl, et al. “An analysis of model-based Interval Estimation for Markov Decision Processes,”
(Journal of Computer and System Sciences '08)
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Model-based interval estimation with exploration bonus (MBIE-EB)

There is an algorithm called MBIE-EB! that is greedy with respect to:

R N ey
n n

N - ) - -
—~ T~

uncertainty of #  uncertainty of p

1. A. Strehl, et al. “An analysis of model-based Interval Estimation for Markov Decision Processes,”
(Journal of Computer and System Sciences '08)
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Model-Based interval estimation with exploration bonus (MBIE-EB)

There is an algorithm called MBIE-EB that is greedy with respect to:

Cva+ o+ 2
n n

—

uncertainty of # uncertainty of p

MBIE-EB is also efficient since it finds an e-optimal policy in following number of time steps:

ol EIRE4
e3(1 — )0
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Takeaways so far:

1.  Agood algorithm like MBIE-EB uses
bonuses as measures of uncertainty

2. We'reinterested in solving [& A

-+
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Problem setting




MDPs cannot model
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But Monitored MDPs! can!

1. S. Parisi, et al. “Monitored Markov Decision Processes,” (AAMAS '24)
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Monitored Markov decision processes (Mon-MDPs)

An extension of MDPs to cover partial observability of rewards

- Environment

Monitor

Agent
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Monitored Markov decision processes (Mon-MDPs)

An extension of MDPs to cover partial observability of rewards
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Monitored Markov decision processes (Mon-MDPs)

An extension of MDPs to cover partial observability of rewards
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Monitored Markov decision processes (Mon-MDPs)

An extension of MDPs to cover partial observability of rewards
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Monitored Markov decision processes (Mon-MDPs)

An extension of MDPs to cover partial observability of rewards
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An extension of MDPs to cover partial observability of rewards

The goal: max [E [Z }/ R’ +R, ]
A finite Mon-MDP: (&, A, r, p, f™, v)
S: =85°XS", A =X g™

r is the joint mean reward

p is the joint transition dynamics

Monitor function R R

0<y<l

AST

A

)
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uil}

l§+1 ¢

» Environment .

Monitored Markov decision processes (Mon-MDPs)

Monitor
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Assumption

» Environment -
Re ]_ @
i g

: qe
Monitor t+1
_) E—
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Agent

<

Truthfulness: The monitor doesn’t change the underlying reward:

ﬁ?ﬂ € RS L]

+1°
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Bottleneck - An example of a Mon-MDP

Suppose the button activates a monitoring system
@orr
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Bottleneck - An example of a Mon-MDP

Suppose the button activates a monitoring system

oo
S = {OFF, ON}, &": = {NO-OP} % n
Let X, be random uniformand0 <p <1 1 W
REe - — { +1> iFX, <pand§;” = ON;
a 1, Otherwise 1
1
ON, ifS]"=OFFandS;="B-CELL'andAf=1: [g] [,
S =9 OFF, it §" = ONand§; ="B-CELL"and A; = | ; — =

S, Otherwise
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Bottleneck - An example of a Mon-MDP

S™M: = {OFF, ON},

Let X, be random uniformand0 <p <1

e . _ o1, iFX, < pand S = ON;
+1° -
1, Otherwise
ON, if§;" =OFFandS; ="B-CELL"and A, = | ;
S, =y OFF, if ;" = ONand §; = "B-CELL"and A, = | ; ‘3’

Suppose the button activates a monitoring system

— 02

ON

A" = {NO-OP}

- [

¥

S/",  Otherwise

+1°

P . _ —0.2, if §;" = ON;
- 0, Otherwise
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Our research questions

Review

1. How to detect L cells from all the others?

2. How to deal with L cells?

3. Can the agent be efficient in watering

while not impacting (1) and (2)?

&
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1- How to detect true 1 cells?



1- How to detect true 1 cells?

Explore to observe rewards

1 if the action led to observing the reward in a state that the reward hasn't been observed before

0 otherwise

@orff
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1- How to detect true 1 cells?

Explore to observe rewards

1 if the action led to observing the reward in a state that the reward hasn't been observed before

0 otherwise
ON
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1- How to detect true 1 cells?

Explore to observe rewards

~ | 1 iftheaction led to observing the reward in a state that the reward hasn't been observed before
Ry = .
0 otherwise
ON
R .. is Bernoulli. 1

o
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Measuring uncertainty

Review

* Suppose you have n samples. Then

distance (empirical mean, true mean) <

* If you particularly have n Bernoulli samples. Then

distance (empirical mean, true mean) < —

for sufficiently large value of /

p

n

p

n
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1- How to detect true 1 cells?

Explore to observe rewards

7{ )1 if the action led to observing the reward in a state that the reward hasn't been observed before
1 = .
a 0 otherwise

—

R ., is Bernoulli.
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1- How to detect true 1 cells?

Explore to observe rewards

o 1 if the action led to observing the reward in a state that the reward hasn't been observed before
] = .
T O otherwise

—

R .. is Bernoulli.

Be greedy w.r.t E(s, a) = g <ﬁ>

n

uncertainty for 7
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1- How to detect true 1 cells?

Explore to observe rewards

o { 1 if the action led to observing the reward in a state that the reward hasn't been observed before
t+1 =

0 otherwise

—

R .. is Bernoulli. —
S, d

Be greedy w.r.t E(s, a) = g (ﬁ) + }’;ﬁ (S/ Sa“) V(S/) T 5% /

n

uncertainty for 7

uncertainty for p
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Our research questions

Review

1. How to detect L cells from all the others?

2. How to deal with L cells?

3. Can the agent be efficient in watering

while not impacting (1) and (2)?
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2- How to deal with L cells?
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2- How to deal with L cells?

Be pessimistic about them

"

o
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Our research questions

Review

1. How to detect L cells from all the others?

2. How to deal with _L cells?

3. Can the agent be efficient in watering

while not impacting (1) and (2)?

3

1
1

- |- |

49



3- Can the agent be efficient?



3- Can the agent be efficient?

Use MBIE-EB
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3- Can the agent be efficient?

Use MBIE-EB

O(s, a) = 7 (Se, ae) +

uncertainty of ¢

number of times the

env reward is
observed
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3- Can the agent be efficient?

Use MBIE-EB

V2L \/ 2
uncertainty of uncertainty of

number of times the

number of times the

env reward is
observed

mon reward is
observed
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3- Can the agent be efficient?

Use MBIE-EB

uncertainty of uncertainty of

number of times the number of times the

env reward is mon reward is
observed observed

uncertainty of p

number of visits to
S.d
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3- Can the agent be efficient?

Use MBIE-EB

O(s,a) = F° (Se, Cle) + d + (sm, am) + P + ;/Zﬁ <S’
>

S, a) V(s +

uncertainty of uncertainty of uncertainty of p

number of visits to
S.d

number of times the number of times the

env reward is mon reward is
observed observed

If n, was zero (due to unobservability), use W instead.
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Our research questions

Review

1. How to detect L cells from all the others?

2. How to deal with _L cells?

3. Can the agent be efficient in watering

while not impacting (1) and (2)?
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Our research questions

Review

1. How to detect L cells from all the others?

2. How to deal with _L cells?

3. Can the agent be efficient in watering

while not impacting (1) and (2)?

parad
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Monitored MBIE-EB’s theoretical performance



Monitored MBIE-EB’s theoretical performance

5( ERlE:A4 )
p(1 —y)oe?



Monitored MBIE-EB’s empirical performance



Monitored MBIE-EB’s empirical performance

On River Swim

0

The agent should go to the right but due to
stochasticity, it’s more likely to move left or stay put.
This stochasticity makes the exploration hard.
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Monitored MBIE-EB’s empirical performance

On River Swim & Bottleneck ‘
OFF

3

- | -

W

-

The agent should go to the right but due to
stochastic, it’s more likely to move left or stay put.
This stochasticity makes the exploration hard.

- |- |
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Monitored MBIE-EB’s empirical performance

Directed Explore-Exploit (Directed E?) is the state-of-the-art algorithm in Mon-MDPs

Monitored MBIE-EB

= - -
3 3 0.0F 5 0.3
D 20.0 — 7\ 03— +— I
Q Q e
ad Y [ Y o.1
h  15.0 e ~100.07 0. 4—1—, , I
Q Q 0 10 20 30 Q
— - = 0.2
- 10.0: - —200.0 -
bt O O
- “E .E
= 5.0 3 _300.0- = =0.5]
S o) o)
) O 0
L 0.0 : , : , . . o 30 >0 20 0 - : ‘
'a 0 4 8 12 16 20 D—' D— 0 10 20 30
.. - 3 ..
Training Steps (x10°) Training Steps (x107) Training Steps (x10°)
River Swim Bottleneckw/ p = 5 % Bottleneckw/ p = 5 %

- Dashed horizontal line is the minimax-optimal discounted return. 64



Discounted Test Return

Takeaways
Monitored MBIE-EB

c c
0.0 0.3
20.0 b= - / b=
v | o s | —
o / X o1
15.0 4+ —100.0: / +
v -0.7° v " v
Q 0 10 20 30 Q
= = _o.2
10.0¢ - —200.0 -
0 )
c =
5.0 3 -300.0 - =0.5
O O
ooli—~__ ? , - . % | - ‘
0 4 8 12 16 20 A 0 10 20 30 A 0 10 20 30
. 8 A 3 .
Training Steps (x10°) Training Steps (x10%) Training Steps (x10°)
River Swim Bottleneck w/ p = 5% Bottleneck w/ p = 5%

Due to being model-based and planning, Monitored MBIE-EB performs well on River Swim.

Monitored MBIE-EB is robust against stochastic observability and finds the minimax-
optimal policy.

Monitored MBIE-EB can leverage prior knowledge about the monitor. 65



List of Contributions



List of my contributions

Defining the minimax-optimality in Mon-MDPs replacing the notion of MDPs' optimality.

Presenting Monitored MBIE-EB, the first model-based minimax-optimal algorithm for Mon-

MDPs.
Proving the polynomial sample complexity of Monitored MBIE-EB.

Showing the dependence of the Monitored MBIE-EB’s sample complexity on p in Mon-
MDPs is essentially unimprovable.

Demonstrating the superior performance of Monitored MBIE-EB compared to Directed

E?, the previous state-of-the-art algorithm in Mon-MDPs. We showed more dramatic results

when the dynamics of how the agent can or cannot observe the reward is known apriori.
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Future work



I- Planning and counts in the latent space

Beyond finite domains

#Exploration: A Study of Count-Based Exploration
for Deep Reinforcement Learning

Haoran Tang'*, Rein Houthooft3** , Davis Foote?, Adam Stooke?, Xi Chen?',
Yan Duan??, John Schulman®, Filip De Turck3, Pieter Abbeel 27

1 UC Berkeley, Department of Mathematics

2 UC Berkeley, Department of Electrical Engineering and Computer Sciences

3 Ghent University — imec, Department of Information Technology

4 OpenAl
downsample
6@6 (P ) 6l x 6

b(-)

96 X H X 5 512
96 x 11 x 11 _
| 96 x 24 x 24 1024
1 x 52 x 52

(2016)

2400

fﬁ X 6 I 6 1 6 linear softmax

96 x 5 X 5

96 x 10 x 10
96 x 24 x 24

1 x52x52 64 x52 x 52

Planning to Explore via Self-Supervised World Models

Ramanan Sekar ! *

Action a

Policy
Network

Latent
State

Features

Encoder

Image

Oleh Rybkin ! * Kostas Daniilidis! Pieter Abbeel > Danijar Hafner ** Deepak Pathak > ¢

Planning in Latent Space

i
Ti41

Latent Disagreement

7.1 7.2 I K
ht+1 ht+1 t+1
w1 w2 ¢ K
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2- Use abetter base algorithm

MBIE-EB’s upper bound is loose

PAC Bounds for Discounted M DPs

Our upper bound

Tor Lattimore! and Marcus Hutter!??

Research School of Comyuter Science

I Australian National University and “ETH Ziirich and SNICTA
{tor.lattimore,marcus.hutter}@anu.edu.au

| S| || o (1]

p(1 — y)oe’ (1 — y)3¢2

(2012)
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3- Unifying the observation and optimization

A unified algorithm

Near-optimal Reinf()l‘cement Learning R-MAX — A General Polynomial Time Algorithm for
. . . Near-Optimal Reinforcement Learning
in Polynomial Time

Ronen I. Brafman BRAFMAN@QCS.BGU.AC.IL
Computer Science Department

MICHAEL KEARNS | | mkearns @cis.upenn.edu Ben-Gurion University

Department of Computer and Information Science, University of Pennsylvania, Moore School Building, Beer-Sheva, Israel 84105

200 South 33rd Street, Philadelphia, PA 19104-6389, USA Moshe Tennenholtz* MOSHE@ROBOTICS. STANFORD. EDU
Computer Science Department

SATINDER SINGH* satinder.baveja@syntekcapital.com Stanford University

Syntek Capital, New York, NY 10019, USA Stanford, CA 94305

Explicit Explore or Exploit (E?), (2002) R-Max, (2002)
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