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Abstract

As of August 22, 2025: In this document I intend to summarize, highlight my gaps in un-
derstanding, and my gut feelings around future directions regarding: Value-aware model learning
(VAML) (Farahmand et al., 2017), the value equivalence (VE) principle (Grimm et al., 2020), proper
value equivalence (PVE) (Grimm et al., 2021), and model equivalence principle for risk-sensitive re-
inforcement learning (Kastner et al., 2023). Especially, the first and the last references are pretty
precise, so I should be able to understand them.

Notation guide

• Bold letters denote sets.

• Calligraphic letters denote distributions.

• Capital letters denote subsets (note that random variables are subsets).

• Lower case letter denote elements that belong to a set.

1 Introduction

Let our MDP be the tuple ⟨S,A, p∗, r∗, γ⟩, where p∗ is the transition kernel and r∗ : S ×A → B(R) is
the immediate expected reward function which we assume is know to the agent in advance. The goal
in model-based reinforcement learning (MBRL) has traditionally been learning an estimate p̂ of p∗, and
then using p̂ for planning to produce an optimal policy. Estimating p∗ by p̂ is problem of conditional
probability estimation and the goal is to make p̂ as close as possible to p∗.

One approach to estimate p∗ is by maximum-likelihood estimation (MLE) method. The reason
MLE is an appropriate approach is because of its relation to KL divergence. We know that for two
distributions p1, and p2, the KL divergence KL(p1||p2) is zero if and only of p1 = p2 almost surely. So,
now we show that maximizing the likelihood, minimizes the KL divergence which is the goal. Suppose
p1 is the distribution we want to estimate with the true parameter θ∗, and p2 is our estimate. We want
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to find parameters θmin such that

θmin = argmin
θ

KL(p1(·; θ∗)||p2(·; θ))

= argmin
θ

Ex∼p1(·;θ∗)

[
log

p1(x; θ
∗)

p2(x; θ)

]
= argmin

θ
Ex∼p1(·;θ∗) [log p1(x; θ

∗)− log p2(x; θ)]

= argmin
θ

Ex∼p1(·;θ∗) [− log p2(x; θ)] (log p1(x; θ
∗) doesn’t affect the argument of minima)

= argmax
θ

Ex∼p1(·;θ∗) [log p2(x; θ)]

= argmax
θ

Ex∼p1(·;θ∗) [log p2(x; θ)]

= argmax
θ

n∑
i

p1(xi; θ
∗) log p2(xi; θ) (If we have a dataset of size n)

= argmax
θ

log Πn
i p2(xi; θ) (p1(xi; θ

∗) doesn’t affect the argument of maxima)

= argmax
θ

Πn
i p2(xi; θ). (MLE definition)

Hence, MLE is a viable option to estimate p∗ by p̂. The MLE approach has been the dominant strategy
in MBRL traditionally. Making p̂ close to p∗ through MLE in MBRL is also justified by the fact that the
resulting loss because of the mismatch of p̂ and p∗ in estimating action value of a policy π for state-action
(s, a) ∈ S×A is upper bounded as the following:

ℓ (p̂, p∗; vπ) (s, a) = |[p∗(· | s, a)− p̂(· | s, a)] vπ(·)|
= ⟨p∗(· | s, a)− p̂(· | s, a), vπ⟩
≤ ∥p∗(· | s, a)− p̂(· | s, a)∥1 · ∥vπ∥∞ (Hölder’s inequality)

≤
√
2KL(p∗||p̂) · ∥vπ∥∞. (Pinsker’s inequality)

Since MLE minimizes the KL divergence, the above display justifies the use of MLE. The transition kernel
follows the multinomial distribution and the MLE for this distribution prescribes that if the state-action
(s, a) is visited N(s, a) times and the next state visited after the ith visit is Si then

p̂ (s′|s, a) = 1

N(s, a)

N(s,a)∑
i=1

I {S′
i = s′} , ∀s′ ∈ S.

Nonetheless, the task-agnostic model learning is wasteful. There is no need to learn an accurate model
for parts of the environment that are irrelevant to the task hand. For example, for a cooking-assistant
robot the dynamics of the elevator inside the building is not of interest. Hence, model learning should
be tailored toward the task at hand. This argument is at the core of alternative perspectives that will
come in the following sections.

2 VAML

Farahmand et al. (2017) directly considers ℓ (p̂, p∗; vπ). Instead of the pointwise distance, they consider
a weighted loss where the weighting ν ∈ ∆(S × A)1 is probability distribution that puts weights on
important state-actions. Second, instead of the L1(ν)-norm loss, they consider the L2(ν)-norm. Third,
they consider the the distance under the worse value function in their function class V.

ℓ22 (p̂, p
∗) =

∫
dν(x, a) sup

v∈V

∣∣∣∣∫ [p∗ (ds′|s, a)− p̂ (ds′|s, a)] v (s′)
∣∣∣∣2 (1)

1∆(X) represents the set of probability distributions over the set X.
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Similar to what we showed in Section 1, we can bound the right-hand side of Equation (1) as follows:

sup
v∈V

∣∣∣∣∫ [p∗ (ds′|s, a)− p̂ (ds′|s, a)] v (s′)
∣∣∣∣ ≤ ∥p∗(· | s, a)− p̂(· | s, a)∥1 sup

v∈V
∥v∥∞. (2)

But, the right-hand side of Equation (2) is quite loose. Specifically, supv∈V∥v∥∞ can be very large while
the on the left-hand side the value of sup is also controlled by the mismatch between distribution. Hence,
VAML aims to optimize the left-hand side of Equation (2) through Equation (1) by first gathering data
using some procedure, minimize the loss and handing off the learned transition kernel to the planner.
Then, VAML provides an upper bound on Equation (1). In order to state the upper bound, it is useful
to revisit some concepts from the supervised learning literature.

Definition 1 (Györfi et al. (2002)[Definition 9.3]). Let ϵ > 0, let G be a set of function Rd → R,
1 ≤ p ≤ ∞, and let ν be a probability measure on Rd. For a function f : Rd → R set

∥f∥Lp(ν) :=

[∫
|f(z)|pdν

] 1
p

.

(a) Every finite collection of functions g1, . . . , gN : Rd → R with the property that for every g ∈ G
there is a j = j(g) ∈ {1, . . . , N} such that

∥g − gj∥Lp(ν)
< ϵ

is called and ϵ−cover of G with respect to ∥·∥Lp(ν)
.

(b) LetN
(
ϵ,G, ∥·∥Lp(ν)

)
be the size of the smallest ϵ-cover ofG w.r.t ∥·∥Lp(ν)

. TakeN
(
ϵ,G, ∥·∥Lp(ν)

)
=

∞ if no finite ϵ-cover exits. Then, N
(
ϵ,G, ∥·∥Lp(ν)

)
is called an ϵ-covering number of G w.r.t

∥·∥Lp(ν)
.

(c) Let zn1 = (z1, . . . , zn) be n fixed points in Rd, Let νn be the corresponding empirical measure, i.e.,

νn(A) =
1

n

n∑
i=1

I{zi ∈ A}, (A ⊆ Rd),

then

∥f∥Lp(νn) :=

[
1

n

n∑
i=1

|f(zi)|p
] 1

p

,

and any ϵ-cover of G w.r.t ∥·∥Lp(νn) will be an Lp ϵ-cover of G on zn1 an the ϵ-covering number
of G w.r.t ∥·∥Lp(νn) will be denoted by Np (ϵ,G, zn1 ). In other words, Np (ϵ,G, zn1 ) is the minimal

N ∈ N such that there exists functions g1, . . . , gN : Rd → R with the property that for every g ∈ G
there is a j = j(g) ∈ {1, . . . , N} such that[

1

n

n∑
i=1

|g(zi)− gj(zi)|p
] 1

p

< ϵ.

If Zn
1 = (Z1, . . . , Zn) is a sequence of i.i.d random variables, then Np (ϵ,G, Zn

1 ) is a random variable
whose expected value plays an important role. In summary, the covering number of a function class
measure the complexity of learning it.

Definition 2 (Vector space, Introduction to Functional Analysis). A vector space V over a field K
(which we’ll take to be either R or C) is a set of vectors which comes with an addition +: V ×V → V
and scalar multiplication ·: K×V→ V, along with some axioms: commutativity, associativity, identity,
and inverse of addition, identity of multiplication, and distributivity.

Definition 3 (Norm, Introduction to Functional Analysis). A norm on a vector space V with field K
is a function ∥·∥ : V→ [0,∞) satisfying the following three properties:

3

https://ocw.mit.edu/courses/18-102-introduction-to-functional-analysis-spring-2021/8fb8d5c170f1613151aca71de21027bc_MIT18_102s21_full_lec.pdf
https://ocw.mit.edu/courses/18-102-introduction-to-functional-analysis-spring-2021/8fb8d5c170f1613151aca71de21027bc_MIT18_102s21_full_lec.pdf


Figure 1: Example of ϵ-cover. We see that g1, . . . , gN are not necessarily in G.

(a) (Definiteness) ∥v∥ = 0 if and only if v = 0.

(b) (Homogeneity) ∥λv∥ = |λ|∥v∥ for all v ∈ V and λ ∈ K.

(c) (Triangle inequality) ∥v1 + v2∥ ≤ ∥v1∥+ ∥v2∥ for all v1, v2 ∈ V.

A seminorm does not satisfy the first property.

After our detour to revisit some background, let us state the assumptions made by Farahmand
et al. (2017) and finally their master theorem. Consider a family of distribution ∆0 and a pseudo-norm
J : ∆→ [0,∞]. Let set ∆B used by VAML be ∆B = {p ∈∆ : J(p) ≤ B} for some B > 0. The reason
J is a pseudo-norm and not even a semi-norm is that the the set of probability distributions is not a
vector space because it’s not closed with respect to the addition and scalar multiplication. Farahmand
et al. (2017) tried to give some examples of what J could be that didn’t convince me. I asked ChatGPT
about possible Js and here are the answers:

(A) Lp norms on densities

(B) Distances between probability measures: TV, Wasserstein, KL, etc.

Assumption 1 (Farahmand et al. (2017, Assumption A1, Capacity of the function space)). For B > 0,
let ∆B = {p ∈∆ : J(p) ≤ B}. There exists constants C > 0 and 0 < α < 1 such that for any ϵ > 0, and
all sequence z1, . . . , zn ∈ Z = S×A the following metric entropy condition is satisfied:

logN
(
ϵ,∆B , L2(p

∗
z1:n)

)
≤ C

(
B

ϵ

)2α

.

Let the value function space be V =
{
vθ(s) = ϕ⊤(s)θ : θ : Rp, ∥θ∥θ ≤ B

}
, with ϕ : S→ Rp being the

feature map.

Theorem 1 (Farahmand et al. (2017, Theorem 2)). Given a dataset Dn =
{
(Si, Ai, S

′
i)

n
i=1

}
with in-

dependent and identically distributed samples (Si, Ai) ∼ ν, with S′
i ∼ p∗(· | Si, Ai), let p̂ be the mini-

mizer of the VAML algorithm, i.e., p̂ ← argminP∈∆(S) ℓ
2
2(p, p

∗
n), with the previously specified choice of
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value function space V. Let Assumption 1 holds. Furthermore, assume that sups∈S∥ϕ(s)∥∞ ≤ 1 and
sups∈S∥ϕ(s)∥2 ≤ 1. Fix δ > 0. There exists a constant c > 0 such that

Equation (1) = E
[
sup
v∈V
|(p̂Z − p∗Z)v|

2

]
≤ inf

p′∈∆(S)
E
[
sup
v∈V
|(p′Z − p∗Z)v|

2
]

︸ ︷︷ ︸
model or function approximation error

+ (3)

c(1 +Bα)p

√
log(p/δ)

n
+

16 log(4/δ)

3n︸ ︷︷ ︸
estimation error

.

with probability at least 1− δ.

Note that since we’re competing against values in V (supv∈V), the estimation with more data washes
out and there is no residual on that part. However, since p̂ ∈ ∆B but we’re competing against p∗ ∈ ∆,
the residual error on the model approximation persists.

2.1 What I didn’t understand about VAML

I just didn’t go through the proofs. The arguments are clear to me.

3 VE

VAML exclusively studies the linear value functions case. Now, we move on to a more holistic formulation
of characterizing useful models. We’re going to go through all of propositions and definitions given by
Grimm et al. (2020). But, before doing so, we need to review the concept of an operator is a functional
analysis sense.

You think simply think of an operator as a mapping (a function) from a set of functions to another
set of functions. However, there is a more elegant and useful way of defining it. From linear algebra, we
know that we should view functions as vectors (Strang, 2022). Also, from linear algebra we know that
matrix-vector inner product results in a vector. So, by analogy, we are looking for an equivalent concept
to matrices in infinite-dimensional spaces. Operators are the analog of matrices in functional analysis
[hence their similar notation], so they turn a function into another function. Formally,

Definition 4 (Functional Analysis and Operator Theory, Definition C.1). Let X,Y be vector spaces,
and let T : X → Y be function mapping X into Y . We either write T (f) or Tf to denote the image
under T of an element f ∈ X. Some interesting properties that involve both the function-like perspective
and the matrix-like perspective.

(A) T is injective of T (f) = T (g) implies f = g.

(B) The kernel or null space of if ker(T ) = {f ∈ X : T (f) = 0}

(C) The rank of T is the is the vector space dimension of its range. In particular T is finite-rank if its
range is finite-dimensional.

Note that as indicated in Definition 4, the domain and the co-domain of an operator must be vector
spaces. This makes an operator different from other mappings.

We know that the Bellman equation for policy evaluation for a policy π is written as

vπ(s) := Eπ

[
r∗(s, a) + γ

∑
s′

p∗ (s′|s, a) vπ (s′)

]
, s ∈ S. (4)

Let us fix π and define rπ and pπ as

rπ(s) =
∑
a

π(a | s)r∗(s, a), pπ(· | s) =
∑
a

π(a | s)p∗(·|s, a), ∀s ∈ S.
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Then, we can rewrite Equation (5) as

vπ(s) = rπ(s) + γ
∑
s′

pπ (s
′|s) vπ (s′) , ∀s ∈ S.

Now, we can define the Bellman operator for policy evaluation as

(Tπv) (s) = rπ(s) + γ
∑
s′

pπ (s
′|s) vπ (s′) , ∀s ∈ S,

or by viewing rπ as a vector in R|S| and pπ a matrix in R|S|×|S|, compactly as Tπ : v 7→ rπ + γpπv.
The Bellman optimality equation is written as

v∗(s) := max
a

{
r∗(s, a) + γ

∑
s′

p∗ (s′|s, a) v∗ (s′)

}
, s ∈ S. (5)

Hence, by a similar procedure for pπ, we can define the Bellman optimality operator T ∗ as

(Tv) (s) = max
a

{
r∗(s, a) + γ

∑
s′

p∗ (s′|a, s) v∗ (s′)

}
, ∀s ∈ S,

or compactly as T : v 7→ maxπ {rπ + γpπv}. Now, we have all the tools needed to dive into VE.

Let Π be set of all stationary Markov policies2, i.e., Π = ∆(A)
S
= {π | π : S→∆(A)}, and let V =

RS = {v | v : S→ R} be set of all value functions. Given state and action spaces, model approximation
in MBRL consists an approximation of the expected immediate reward r∗ and an approximation of
the transition kernel p∗. So, we if represent a model by m = (r, p), where r and p are some arbitrary
approximation, then we can represent the environment itself as the true model by m∗ = (r∗, p∗). Now,
we can state the value equivalence principle and its associated propositions.

Definition 5 (Grimm et al. (2020, Definition 1)). Let Π ⊆ Π be a set of policies and let V ⊆ V be a
set of value functions. We say that two models m and m̂ are value equivalent with respect to Π and V
if and only if

Tπv = T̂πv, ∀π ∈ Π,∀v ∈ V.

“Two models are value equivalent with respect to Π and V if the effect of the Bellman operator
induced by any policy π ∈ Π on any function v ∈ V is the same for both models. Thus, if we
are only interested in Π and V , value-equivalent models are functionally identical (Grimm
et al., 2020).”

Definition 6 (Grimm et al. (2020)[Definition 2]). Let Π and V be defined as in Definition 5. Let M be
a set of models. Given a model m, M(Π, V ;m) the set of value-equivalent models to m with respect to
Π and V that are in M , is a subset of M , i.e., M(Π, V ;m) ⊆M .

Let M∗ be a set of models containing at least one model m∗ [I’d call it the realizable setting]. Given a
set of models M ∈ M∗ [that doesn’t necessarily contain m∗], often one is interested in models m ∈ M
that are value equivalent to m∗. We simplify the notation by defining M∗(Π, V ) = M(Π, V ;m∗).

“The set M∗(Π, V ) contains all the models in M that are value equivalent to the true model
m∗ with respect to Π and V . Since any two models m1,m2 ∈M∗(Π, V ) are equally suitable
for value-based planning using Π and V , we are free to use other criteria to choose between
them. For example, if m1 is much simpler to represent or learn than m2, it can be preferred
without compromises (Grimm et al., 2020).”

Property 1 (Grimm et al. (2020)[Property 1]). Given M1 ⊆M2, we have that M∗
1 (Π, V ) ⊆M∗

2 (Π, V ).

Property 1 is an elementary set topology argument. It makes sense.

2Throughout this document, we’ll only focus on stationary Markov policies, and for consciousness, we refer to them
simply as policies.
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Property 2 (Grimm et al. (2020)[Property 2]). M∗(Π,V) either contains m∗ or is the empty set.

Property 2 says that only the environment itself is value equivalent with respect to all policies and
values. In other words, any other model that is value equivalent with respect to all policies and values is
simply equivalent to the environment itself. Now, it the set of models that has been chosen M doesn’t
contain the model of the environment, then the set of models equivalent to the environment is empty
which makes sense.

Property 3 (Grimm et al. (2020)[Property 3]). Given that Π1 ⊆ Π2 and V1 ⊆ V2, we have that
M∗(Π2, V2) ⊆M∗(Π1, V1).

Intuitively Property 3 makes sense. The bigger you make the set of policies and values you want to
be equivalent to the environment, the more accurate your models should be which eventually collapses
into only being the environment itself capable of achieving.

Property 4 (Grimm et al. (2020)[Property 4]). If m∗ ∈M , then m∗ ∈M∗(Π, V ) for all Π and V .

Property 4 is immediate from the definition of M∗(Π, V ).

3.1 Controlling the set of equivalent models’ size

How much does M∗(Π, V ) decrease in size when we, say, add one function to V? In this section we
address this and similar questions. Grimm et al. (2020) introduces the concept of p-span which initially I
found completely unnecessary given necessary definitions have already been given in functional analysis,
but since Π is not a vector space, it seems the approach of Grimm et al. (2020) is inevitable. We review
the definition of span that suffices. Also, Grimm et al. (2020) mentions discrete sets not countable or
finite. So, we must revisit what discrete means and how it is different than countable.

Definition 7 (Lax (2014)[Theorem 2]). Given a vector space V over a field K, the span of set V ⊆ V
is the set of all finite linear combinations of elements V . Formally,

span(V ) = {a1v1 + · · ·+ anvn | v1, . . . , vn ∈ V, a1, . . . , an ∈ K, for any n ∈ N} .

In order to understand what discrete mean, we need to understand what: a metric space, an open
set, a topology mean in order. I’ll use this post of Terrance Tao to understand these concepts.

Definition 8 (Metric spaces). A metric space is a set X together with a distance function d : X×X→
[0,∞), (X = (X, d)) which obeys the following properties:

(A) (Non-degeneracy) For any x1, x2 ∈ X, we have d(x1, x2) ≥ 0, with equality if and only if x1 = x2.

(B) (Symmetry) For any x1, x2 ∈ X, we have d(x1, x2) = d(x2, x1).

(C) (Triangle inequality) For any x1, x2, x3 ∈ X, we have d(x1, x3) ≤ d(x1, x2) + d(x2, x3).

Definition 9 (An open set). Let (X, d) be a metric space. Given any x ∈ X and r > 0, define the open
ball B(x, r) centered at x with radius r to be the set of all y ∈ X such that d(x, y) < r. Given a set E,
we say that x is an interior point of E if there is some open ball centered at x which is contained in E.
The set of all interior points is called the interior E. A set is open if every point is an interior point.

Definition 9 is like our usual open interval in one dimension.

Definition 10 (A topological space). A topological is a set X, together with a collection F of X’s
subsets, known as open sets, which follow the following axioms:

(A) ∅ and X are open. (∅,X ∈ F )

(B) The intersection of any finite number of open sets is open.

(C) The union of any arbitrary number of open sets is open.

The collection F is called a topology on X.

Note that the definition of open sets in Definition 10 is different than Definition 9 and is by con-
struction. So, the difference between countable and discrete is quite substantial. Countable focuses on
assigning a natural number to each element, but discrete focuses of having open sets.
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Example. The finest (or strongest) topology on any set X is the discrete topology 2X = {E : E ⊆ X},
in which every set is open; this is the topology generated by the discrete metric3. The coarsest (or
weakest) topology is the trivial topology {∅,X}, in which only the empty set and the full set are open.

Proposition 1 (Grimm et al. (2020, Proposition 1)). For discrete [finite is correct] Π and V , we have
that M∗(Π, V ) = M∗(p-span(Π) ∩Π, span(V )).

From our aforementioned definitions, it is evident that by discrete, Grimm et al. (2020) meant finite.
Because Π for example cannot be a discrete topology because {π1} ∪ {π2} = {π1, π2} /∈ Π. Actually,
they in fact meant Π and V are finite and linearly independent, however I see no point on why limiting
to this case, why not using the definition of span in general even for infinite-dimensional vector spaces.
Proposition 1’s proof in the original work is correct.

“Proposition 1 provides one possible answer to the question posed at the beginning of this
section. the contraction of M∗(Π, V ) resulting from the addition of one policy to Π or one
function to V . For instance, if a function v can be obtained as a linear combination of the
functions in V , adding it to this set will have no effect on the space of equivalent models
M∗(Π, V ) (Grimm et al., 2020).”

Let P be the set of all transition kernels, P ⊂ P be a set of transitions, P ∗(Π, V ) the set of transition
kernels that are that value equivalent to p∗.

Definition 11 (Grimm et al. (2020)). The dimension of a set X is the Hamel dimension of a vector-space
that encloses some translated version of X.

dim[X] = min
W,⃗c∈W (X)

H-dim[W],

where W (X) = {(W, c⃗) : X+ c⃗ ⊆W}, W is a vector space, and c⃗ is an offset.

I think Definition 11 is just trying to say that X can become subspace but making sure it contains
the zero vector neutralizing by c⃗.

Remark 1 (Grimm et al. (2020)). dim[P] = (|S| − 1)|S||A|.

Proof. By ChatGPT: For each (s, a) the transition kernel defines a probability simplex over over S.
Since the probabilities have to sum up to one there are |S| − 1 free parameters. Therefore, the total free
parameters is |S||A|(|S| − 1).

Proposition 2 (Grimm et al. (2020, Proposition 2)). Let Π be set of m linearly independent policies
πi ∈ R|S||A| and let V be the set of k linearly independent vectors vi ∈ R|S|, Then,

dim[P ∗(Π, V )] ≤ |S|(|S||A| −mk).

To prove Proposition 2. We need four lemmas. I skip the first lemma as I understood what it was,
though the original work had made it really convoluted. They could used an argument involving the
Kronecker product instead.

Lemma 1 (Grimm et al. (2020, Lemma 2)). For any vector c⃗ and any set Y + c⃗ = {y + c⃗ : y ∈ Y}, it
follows that dim[Y + c⃗] = dim[Y].

The original proof is absolutely wrong. Let’s see if we can prove it ourselves.

Proof.
dim[Y + c⃗] = min

W,⃗b∈W (Y+c⃗)
H-dim[W].

Also,

W (Y + c⃗) =

(
W, b⃗

)
: Y + c⃗+ b⃗︸ ︷︷ ︸

d⃗

∈W

 =
{(

W, b⃗
)
: Y + d⃗ ∈W

}
= W (Y).

3Discrete metric d : X×X → [0,∞), defined by setting d(x, y) = 0 when x = y and d(x, y) = 1 otherwise
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Hence,
dim[Y + c⃗] = min

W,⃗b∈W (Y+c⃗)
H-dim[W] = min

W,⃗b∈W (Y)
H-dim[W] = dim[Y].

Lemma 2 (Grimm et al. (2020, Lemma 3)). If Y is a vector-space, then H-dim[Y] = dim[Y].

The original proof is correct but unnecessarily complicated. By definition,

Proof.
dim[Y] = min

W,⃗c∈W (Y)
H-dim[W].

Since Y is a vector space and W is also a vector space, then c⃗ must be zero (to include the the zero
vector). Since Y is a vector space, it must be that Y = W and H-dim[W] = H-dim[Y].

Lemma 3 (Grimm et al. (2020, Lemma 4)). If X ⊆ Y, then dim[X] ≤ dim[Y].

The original proof is sound. The Proposition 2’s original proof is sound except of min {|S||A|, |S|m} =
|S|m, that needs a justification that authors didn’t give.

Proposition 3 (Grimm et al. (2020, Proposition 3)). Let P̂ be set of approximation models. The
maximum-likelihood estimate of p∗ in P̂ might not belong to P̂ ∗(Π, V ) ̸= ∅.

Proposition 3 is saying that MLE gives an estimate that might not be useful for planning with respect
to policies and values we care.

Definition 12 (Likelihood function). Let X1, . . . , Xn have a joint density function f(X1, . . . , Xn | θ).
Given X1 = x1, . . . , Xn = xn is observed, the likelihood function is defined by

L(θ) = L(θ | x1, . . . , xn) = f(x1, . . . , xn | θ)
∣∣∣
countable setting

= P(x1, . . . , xn | θ)
∣∣∣
i.i.d

= Πn
i=1P(xi | θ)

Proof. I couldn’t understand how the authors had computed the log-likelihood below. So, I asked
ChatGPT and use its answer to make the (left out) calculation clearer.

Suppose we are trying to estimate a transition matrix Θ ∈ Rn×n and choose to use one parameter
θi ∈ R per row. Specifically, we parametrize the distribution on the i-th row as

Θii = θi, θij =
1− θi
n− 1

, for j ̸= j, and θi ∈ [0, 1] : Θ =


θ1

1−θ1
n−1 . . . 1−θ1

n−1
1−θ2
n−1 θ2 . . . 1−θ2

n−1
...

... . . .
...

1−θn
n−1

1−θn
n−1 . . . θn


Now, we compute the expected log-likelihood function of θ ∈ Rn. Let Nij denote the number of times
that transition happened from si to sj and pij be the true transition probability.

L(θ) = Πn
i=1Π

n
j=1P(si → sj | θij)Nij , hence logL(θ) =

n∑
i=1

n∑
j=1

Nij logP(si → sj | θij).

Since we are looking for the expected log-likelihood and
Nij

Ni

Ni→∞−−−−→ p∗ij , we can replace the empirical
frequencies with the true probability.

logL(θ) =

n∑
i=1

n∑
j=1

pij log θij

The maximum log-likelihood estimation ∂ logL(θ)
θi

= 0 leads to θi = p∗ii. This means that the solution
provided by MLE will not be exact if and only if pij ̸= pik for all i ̸= j ̸= k. Now, suppose we have
V = {v} with vi = 1 for some i and vj = 0 for j ̸= i. In this case it is possible to get an exact value-
equivalent solution by making θi = p∗ii and θj = 1 − (n − 1)p∗ji for j ̸= i, regardless what MLE says =,
which in case, since θj ̸= p∗jj is contrasting it.
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Now we have shown that MLE is not the most appropriate way of finding a value-equivalent model,
Grimm et al. (2020) proposes the following objective. We ensure the imprecision of Grimm et al. (2020)’s
notation is not repeated here.

ℓΠ,V (m
∗, m̂) =

∑
Π

∑
V

∥∥∥Tv − T̂ v
∥∥∥ ,

where ∥·∥ is a norm. Since we do not have access to T , we use the empirical version of it. Let ν ∈∆(S),
and Let Dπ =

{
(Si, Ai, Ri, S

′
i)

n
i=1

}
be dataset of n transitions corresponding to policy π ∈ Π, where

Si ∼ ν(·) and Ai ∼ π(· | St). Then, the empirical value-equivalent loss is defined by

ℓΠ,V,ν(m
∗, m̂) =

∑
π∈Π

∑
v∈V

∑
s0∈Dπ

[∣∣∣∣∑n
i=1 I [Si = s0] (Ri + γv (S′

i))∑n
i=1 I [Si = s0]

− T̂ v

∣∣∣∣p]
1
p

.

3.2 How to choose the subset of policies Π and values V ?

Proposition 4 (Grimm et al. (2020, Proposition 4)). Suppose v ∈ V ′ ⇒ Tπv ∈ V ′, for all π ∈ Π. Let
Π ⊆ p-span(Π) and span(V ) = V ′. Then, starting form any v′ ∈ V ′, any m̂ ∈M∗(Π, V ) yields the same
solution as m∗.

The original proof is sound.
The rest of the main body of the paper is extremely ambiguous to me. I may write someday why, but

I wanna move one. Honestly, I just got bored to decipher their intuitions. I’ll get back to these skipped
parts later.

3.3 What I didn’t understand

(A) Really the word discrete in Proposition 1. To me they meant finite and linearly independent ad
they have alluded to in the passage after Remark 1. Proposition 1 is really suspicious.

(B) MLE in Proposition 3 was sneaky and approximate. the counter example inside was also wrong
and I changed it.

(C) Their empirical value-equivalent loss uses a wrong norm formulation.

(D) Page 6 to 9 and 17 to the end were not clear to me a t all.

4 PVE

“ A fundamental question underlying the VE principle is thus how to select the smallest sets
of policies and functions that are sufficient for planning. In this paper we take an important
step towards answering this question. We start by generalizing the concept of VE to order-k
counterparts defined with respect to k applications of the Bellman operator. Unlike VE, the
PVE class may contain multiple models even in the limit when all value functions are used.
Crucially, all these models are sufficient for planning, meaning that they will yield an optimal
policy despite the fact that they may ignore many aspects of the environment (Grimm et al.,
2021).”

PVE wants to show that only value functions are enough to specify the equivalence. Since, every policy
is associated with a value function, in contrast to VE that we needed to choose Π and V , now we only
need to specify Π and V would naturally be their corresponding values. The main advantage of PVE
over VE is that even if all value functions are considered, the class of equivalent models doesn’t shrink
to a singleton.

It is crucial: Grimm et al. (2021) uses Tn
π notation as the repeated application of Tπ such that

limn→∞ Tn
π v = vπ.

Definition 13 (Order-k VE class).

M∗
k (Π, V ) =

{
m̂ ∈M : T̂ k

π v = T k
π v, ∀π ∈ Π,∀v ∈ V

}
.
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Grimm et al. (2021) claims that in contrast to Grimm et al. (2020)’s argument that M∗
1 (Π,V) only

contains the environment, this not true for M∗
k (Π,V) when k > 1.

Proposition 5 (Grimm et al. (2021, Proposition 1)). Let V be a set of functions such that if v ∈ V ,
then Tπv ∈ V for all π ∈ Π. Then, for k, K in N such that k divides K (k|K, or K = mk,m ∈ N) , it
follows that

(A) For any M ⊆M and any Π ∈ Π, we have that M∗
k (Π, V ) ⊆M∗

K(Π, V ).

(B) If Π is non-empty and V contains at least one constant function, then there exits environments
such that M∗

k(Π,V) ⊂M∗
K(Π,V).

The proof the original work for Proposition 5’s part (A) is sound. For part (B), Grimm et al. (2021)
should show that all m ∈ M∗

k(Π,V) are also in M∗
K(Π,V) (which is proved by part (A)), but there

exists a model m0 ∈M∗
K(Π,V) such that m0 /∈M∗

k(Π,V). There is a HUGE subtlety for the proof of
part (B) in Grimm et al. (2021). Specifically, they have assumed that the k application of the Bellman

operator T̂ k
π is the same as one application of the Bellman operator on the k-step return T

(k)
π . Using

ChatGPT, now we dive into the relationship between T̂ k
π and T̂

(k)
π .

We know that

Tπv(s) = Eπ [Rt+1 + γv(St+1)|St = s] , and

G
(k)
t = Eπ

[
Rt+1 + γRt+2 + · · ·+ γk−1Rt+k + γkv(St+k)

∣∣St = s
]
.

By induction, we’ll show that

T k
π v(s) = Eπ

[
k−1∑
i=0

γiRt+i+1 + γkv(St+k)

∣∣∣∣∣St = s

]
= Eπ

[
G

(k)
t

∣∣∣St = s
]
.

Proof. Base case: k = 1 is immediate. Induction step: Suppose the the assumption for step k, i.e.,

T k
π v(s) = Eπ

[∑k−1
i=0 γiRt+i+1 + γkv(St+k)

∣∣∣St = s
]
, now we show that it holds for step k + 1. We have

T k+1
π v(s) = Tπ

(
T k
π v

)
(s) = Eπ

[
Rt+1 + γT k

π v(St+1)
∣∣St = s

]
= Eπ

[
Rt+1 + γEπ

[
k−1∑
i=0

γiRt+1+i+1 + γkv(St+1+k)

∣∣∣∣∣St+1

]∣∣∣∣∣St = s

]

= Eπ

[
k∑

i=1

γiRt+i+1 + γk+1v(St+1+k)

∣∣∣∣∣St = s

]
. (tower rule)

So, as long as the environment and the policy are deterministic (which is the case in Grimm et al.

(2021)’s proof of Proposition 5) T k
π = T

(k)
π . With this important consideration, Grimm et al. (2021)’s

proof for part (B) is sound.

Definition 14 (Grimm et al. (2021, Definition 1)). Given a set of policies Π ⊂ Π, let

M∗
∞ = lim

k→∞
M∗

k (Π,V) = {m̂ ∈M : v̂π = vπ, ∀π ∈ Π}.

We say that each m̂ ∈M∗
∞ is proper value-equivalent to the environment with respect to Π.

Since in the limit of infinite applications of the Bellman operator all value functions converge to the
state-value function of a given policy, PVE only needs defining Π in contrast to VE that needed V as
well.

Proposition 6 (Grimm et al. (2021, Definition 2)). For any Π ∈ Π and k ∈ N it follows that

M∗
∞(Π) =

⋂
π∈Π

M∗
k ({π}, {vπ}).
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The original proof of Proposition 6 is sound.

“We showing how irrelevant aspects of the environment that are eventually captured by
order-one VE are always ignored by PVE in Proposition 7 Grimm et al. (2021).”

Proposition 7 (Grimm et al. (2021, Proposition 3)). Let Π ∈ Π. If the environment state can be factored
as S = X×Y, where |Y| > 1 and vπ(s) = vπ((x, y)) = vπ(x) for all π ∈ Π, then M∗

1(Π,V) ⊂M∗
∞(Π).

The Proposition 7’s original proof is okay (with some corrections in the notation and description).

Proposition 8 (Grimm et al. (2021, Proposition 4)). An optimal policy for any m̂ ∈ M∗
∞(Π) is an

optimal policy in the environment.

Proposition 8 seems immediate by definition and Grimm et al. (2021) didn’t prove it either.

Corollary 1 (Grimm et al. (2021, Corollary 1)). Let Πdet be the set of all deterministic policies. An
optimal policy for any m̂ ∈M∗

∞(Πdet) is also optimal in the environment.

The Corollary 1’s proof seems immediate given that one optimal policy in an MDP is determinis-
tic (Puterman, 2014). The proof of Corollary 1 by Grimm et al. (2021) is fine, in their proof they used the
assumption of focusing on only deterministic policies that was unnecessary compared to my explanation
that related it the infamous optimality of deterministic polices in Puterman (2014).

Proposition 9 (Grimm et al. (2021, Proposition 5)). There exits environments and model classes for
which M∗

∞(Π) ⊂M∗
∞(Πdet).

Proposition 9’s original proof is okay-ish.

Proposition 10 (Grimm et al. (2021, Proposition 6)). For any π ∈ Π, v ∈ V, and k, n ∈ N, we have
that

∥vπ − T̂ k
π vπ∥∞ ≤ (γn + γk)∥vπ − v∥∞ + ∥Tn

π v − T̂ k
π v∥∞.

Proposition 10’s original proof is sound except that the authors should have made it clear that the
model belongs to M∗

k (Π,V).

4.1 Promises

(A) Unlike VE, the PVE class may contain multiple models even in the limit when all value functions
are used. They kept it. Good job!

(B) We construct a loss function for learning PVE models and argue that popular algorithms such as
MuZero can be understood as minimizing an upper bound for this loss (with mild assumptions).
Nope! The authors had confused Tn and T (n) in the MuZero part.

(C) We leverage this connection to propose a modification to MuZero and show that it can lead to
improved performance in practice

4.2 What I didn’t understand

(A) On page 2 they cite Rich’s and Csaba’s book which were unnecessary. One of them was enough.

(B) I didn’t understand the upper and lower bound on the MuZero loss. The derivation is way too
sloppy.

5 Model equivalence for risk-sensitive

5.1 What I didn’t understand

6 Future work

(A) These papers never talked about policy search methods. What can we say about usefulness of
models for those methods? In another words, if the the action space is not finite, these methods
cannot explain the equivalence.
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(B) These papers never talked about average reward. What can we say about usefulness of models for
those methods?
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